Please note that this page does not hosts or makes available any of the listed filenames. You
cannot download any of those files from here.
|
01. 1.04.Real-life-example.csv |
219.83KB |
01. 2.13.Practical-example.Descriptive-statistics-lesson.xlsx |
146.51KB |
01. 3.17.Practical-example.Confidence-intervals-lesson.xlsx |
1.74MB |
01. 365-Data-Science-Data-Science-Interview-Questions-Guide.pdf |
15.56MB |
01. 4.10.Hypothesis-testing-section-practical-example.xlsx |
51.90KB |
01. Absenteeism-data.csv |
32.05KB |
01. Absenteeism-Exercise-Integration.ipynb |
62.35KB |
01. absenteeism-module.py |
6.62KB |
01. Absenteeism-new-data.csv |
1.87KB |
01. Absenteeism-predictions.csv |
2.10KB |
01. Absenteeism-preprocessed.csv |
29.13KB |
01. Additional-Python-Tools-Exercises.ipynb |
11.41KB |
01. Additional-Python-Tools-Lectures.ipynb |
13.47KB |
01. Additional-Python-Tools-Solutions.ipynb |
25.52KB |
01. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4 |
83.53MB |
01. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.vtt |
9.24KB |
01. A Practical Example What You Will Learn in This Course.mp4 |
10.76MB |
01. A Practical Example What You Will Learn in This Course.vtt |
6.82KB |
01. Are You Sure You're All Set.html |
519B |
01. Arithmetic-Operators-Exercise-Py3.ipynb |
2.62KB |
01. Arithmetic-Operators-Lecture-Py3.ipynb |
3.53KB |
01. Arithmetic-Operators-Solution-Py3.ipynb |
4.24KB |
01. Audiobooks-data.csv |
710.77KB |
01. Audiobooks-data.csv |
710.77KB |
01. Basic NN Example (Part 1).mp4 |
9.34MB |
01. Basic NN Example (Part 1).vtt |
4.54KB |
01. Bonus Lecture Next Steps.html |
4.33KB |
01. Business Case Exploring the Dataset and Identifying Predictors.mp4 |
51.29MB |
01. Business Case Exploring the Dataset and Identifying Predictors.vtt |
11.01KB |
01. Business Case Getting Acquainted with the Dataset.mp4 |
60.25MB |
01. Business Case Getting Acquainted with the Dataset.vtt |
10.96KB |
01. Comparison Operators.mp4 |
4.16MB |
01. Comparison Operators.vtt |
2.57KB |
01. Comparison-Operators-Exercise-Py3.ipynb |
1.61KB |
01. Comparison-Operators-Lecture-Py3.ipynb |
2.53KB |
01. Comparison-Operators-Solution-Py3.ipynb |
2.41KB |
01. Course-Notes-Basic-Probability.pdf |
371.05KB |
01. Course-Notes-Bayesian-Inference.pdf |
386.01KB |
01. Course-Notes-Cluster-Analysis.pdf |
208.65KB |
01. Course-Notes-Combinatorics.pdf |
226.12KB |
01. Course-notes-descriptive-statistics.pdf |
482.21KB |
01. Course-notes-descriptive-statistics.pdf |
482.21KB |
01. Course-notes-hypothesis-testing.pdf |
656.44KB |
01. Course-notes-inferential-statistics.pdf |
382.32KB |
01. Course-Notes-Logistic-Regression.pdf |
335.17KB |
01. Course-Notes-Probability-Distributions.pdf |
463.95KB |
01. Course-notes-regression-analysis.pdf |
312.18KB |
01. Course-notes-regression-analysis.pdf |
312.18KB |
01. Course-Notes-Section-2.pdf |
578.08KB |
01. Course-Notes-Section-6.pdf |
936.42KB |
01. data-preprocessing-homework.pdf |
134.47KB |
01. Data Science and Business Buzzwords Why are there so Many.mp4 |
15.59MB |
01. Data Science and Business Buzzwords Why are there so Many.vtt |
7.37KB |
01. Debunking Common Misconceptions.mp4 |
58.86MB |
01. Debunking Common Misconceptions.vtt |
5.53KB |
01. Defining a Function in Python.mp4 |
3.23MB |
01. Defining a Function in Python.vtt |
2.62KB |
01. Defining-a-Function-in-Python-Lecture-Py3.ipynb |
868B |
01. df-preprocessed.csv |
29.11KB |
01. EXERCISE - Age vs Probability.html |
385B |
01. Exploring the Problem with a Machine Learning Mindset.mp4 |
12.96MB |
01. Exploring the Problem with a Machine Learning Mindset.vtt |
4.83KB |
01. Finding the Job - What to Expect and What to Look for.mp4 |
40.03MB |
01. Finding the Job - What to Expect and What to Look for.vtt |
4.66KB |
01. For Loops.mp4 |
12.96MB |
01. For Loops.vtt |
6.77KB |
01. For-Loops-Exercise-Py3.ipynb |
1.28KB |
01. For-Loops-Lecture-Py3.ipynb |
1.26KB |
01. For-Loops-Solution-Py3.ipynb |
1.80KB |
01. Fundamentals of Combinatorics.mp4 |
5.94MB |
01. Fundamentals of Combinatorics.vtt |
1.47KB |
01. Fundamentals of Probability Distributions.mp4 |
19.42MB |
01. Fundamentals of Probability Distributions.vtt |
8.40KB |
01. Game Plan for this Python, SQL, and Tableau Business Exercise.mp4 |
19.67MB |
01. Game Plan for this Python, SQL, and Tableau Business Exercise.vtt |
5.57KB |
01. Glossary.xlsx |
19.97KB |
01. How to Install TensorFlow 2.0.mp4 |
27.34MB |
01. How to Install TensorFlow 2.0.vtt |
6.57KB |
01. Introduction.mp4 |
3.06MB |
01. Introduction.vtt |
1.67KB |
01. Introduction to Cluster Analysis.mp4 |
14.46MB |
01. Introduction to Cluster Analysis.vtt |
4.96KB |
01. Introduction to Logistic Regression.mp4 |
5.87MB |
01. Introduction to Logistic Regression.vtt |
1.82KB |
01. Introduction to Neural Networks.mp4 |
10.49MB |
01. Introduction to Neural Networks.vtt |
6.22KB |
01. Introduction to pandas Series.mp4 |
24.96MB |
01. Introduction to pandas Series.vtt |
10.85KB |
01. Introduction to Programming.mp4 |
14.87MB |
01. Introduction to Programming.vtt |
7.29KB |
01. Introduction-to-Python-Course-Notes.pdf |
2.15MB |
01. Introduction-to-Python-Course-Notes.pdf |
2.15MB |
01. Introduction to Regression Analysis.mp4 |
3.59MB |
01. Introduction to Regression Analysis.vtt |
2.33KB |
01. Introduction-to-the-If-Statement-Exercise-Py3.ipynb |
1.53KB |
01. Introduction-to-the-If-Statement-Lecture-Py3.ipynb |
1.14KB |
01. Introduction-to-the-If-Statement-Solution-Py3.ipynb |
2.19KB |
01. Intro to the Case Study.mp4 |
10.42MB |
01. Intro to the Case Study.vtt |
3.74KB |
01. K-Means Clustering.mp4 |
10.82MB |
01. K-Means Clustering.vtt |
6.60KB |
01. Lending-company.csv |
112.43KB |
01. Lists.mp4 |
23.04MB |
01. Lists.vtt |
10.35KB |
01. Lists-Exercise-Py3.ipynb |
2.14KB |
01. Lists-Lecture-Py3.ipynb |
2.70KB |
01. Lists-Solution-Py3.ipynb |
3.18KB |
01. Location.csv |
13.49KB |
01. Minimal-example-Part-1.ipynb |
1.19KB |
01. MNIST The Dataset.mp4 |
4.53MB |
01. MNIST The Dataset.vtt |
3.65KB |
01. MNIST What is the MNIST Dataset.mp4 |
4.80MB |
01. MNIST What is the MNIST Dataset.vtt |
3.60KB |
01. model |
1.01KB |
01. Multiple Linear Regression.mp4 |
5.68MB |
01. Multiple Linear Regression.vtt |
3.46KB |
01. Necessary Programming Languages and Software Used in Data Science.mp4 |
82.38MB |
01. Necessary Programming Languages and Software Used in Data Science.vtt |
7.97KB |
01. Null vs Alternative Hypothesis.mp4 |
31.94MB |
01. Null vs Alternative Hypothesis.vtt |
7.16KB |
01. Object Oriented Programming.mp4 |
8.66MB |
01. Object Oriented Programming.vtt |
6.86KB |
01. pandas-Fundamentals-Exercises.ipynb |
30.96KB |
01. pandas-Fundamentals-Lectures.ipynb |
21.31KB |
01. pandas-Fundamentals-Solutions.ipynb |
118.35KB |
01. Population and Sample.mp4 |
35.10MB |
01. Population and Sample.vtt |
5.84KB |
01. Practical Example Descriptive Statistics.mp4 |
130.53MB |
01. Practical Example Descriptive Statistics.vtt |
20.99KB |
01. Practical Example Hypothesis Testing.mp4 |
45.83MB |
01. Practical Example Hypothesis Testing.vtt |
8.62KB |
01. Practical Example Inferential Statistics.mp4 |
69.01MB |
01. Practical Example Inferential Statistics.vtt |
13.91KB |
01. Practical Example Linear Regression (Part 1).mp4 |
84.74MB |
01. Practical Example Linear Regression (Part 1).vtt |
14.86KB |
01. Preprocessing Introduction.mp4 |
9.23MB |
01. Preprocessing Introduction.vtt |
4.07KB |
01. Probability in Finance.mp4 |
40.35MB |
01. Probability in Finance.vtt |
10.08KB |
01. Probability-in-Finance-Homework.pdf |
110.68KB |
01. Probability-in-Finance-Solutions.pdf |
184.46KB |
01. READ ME!!!!.html |
564B |
01. Region.csv |
10.22KB |
01. Sales-products.csv |
152.28KB |
01. scaler |
1.86KB |
01. Sets and Events.mp4 |
17.67MB |
01. Sets and Events.vtt |
5.45KB |
01. Shortcuts-for-Jupyter.pdf |
619.17KB |
01. Shortcuts-for-Jupyter.pdf |
619.17KB |
01. sklearn-Linear-Regression-Practical-Example-Part-1.ipynb |
166.91KB |
01. sklearn-Linear-Regression-Practical-Example-Part-1-with-comments.ipynb |
171.38KB |
01. Statistics-Glossary.xlsx |
20.26KB |
01. Stochastic Gradient Descent.mp4 |
7.83MB |
01. Stochastic Gradient Descent.vtt |
4.83KB |
01. Summary on What You've Learned.mp4 |
9.84MB |
01. Summary on What You've Learned.vtt |
5.48KB |
01. Techniques for Working with Traditional Data.mp4 |
107.18MB |
01. Techniques for Working with Traditional Data.vtt |
10.96KB |
01. The Basic Probability Formula.mp4 |
29.40MB |
01. The Basic Probability Formula.vtt |
8.96KB |
01. The IF Statement.mp4 |
6.71MB |
01. The IF Statement.vtt |
3.73KB |
01. The Linear Regression Model.mp4 |
13.48MB |
01. The Linear Regression Model.vtt |
8.13KB |
01. The Reason Behind These Disciplines.mp4 |
46.77MB |
01. The Reason Behind These Disciplines.vtt |
6.54KB |
01. Traditional data science methods and the role of ChatGPT.mp4 |
26.16MB |
01. Traditional data science methods and the role of ChatGPT.vtt |
7.20KB |
01. Types of Clustering.mp4 |
9.01MB |
01. Types of Clustering.vtt |
5.07KB |
01. Types of Data.mp4 |
43.19MB |
01. Types of Data.vtt |
5.82KB |
01. Using Arithmetic Operators in Python.mp4 |
8.63MB |
01. Using Arithmetic Operators in Python.vtt |
4.37KB |
01. Using the .format() Method.mp4 |
25.69MB |
01. Using the .format() Method.vtt |
12.66KB |
01. Variables.mp4 |
8.94MB |
01. Variables.vtt |
4.80KB |
01. Variables-Exercise-Py3.ipynb |
2.23KB |
01. Variables-Lecture-Py3.ipynb |
3.61KB |
01. Variables-Solution-Py3.ipynb |
3.79KB |
01. What are Confidence Intervals.mp4 |
28.61MB |
01. What are Confidence Intervals.vtt |
3.22KB |
01. What are Data, Servers, Clients, Requests, and Responses.mp4 |
19.51MB |
01. What are Data, Servers, Clients, Requests, and Responses.vtt |
6.29KB |
01. What is a Layer.mp4 |
5.17MB |
01. What is a Layer.vtt |
2.65KB |
01. What is a Matrix.mp4 |
11.94MB |
01. What is a Matrix.vtt |
4.63KB |
01. What is Initialization.mp4 |
8.90MB |
01. What is Initialization.vtt |
3.74KB |
01. What is Overfitting.mp4 |
10.81MB |
01. What is Overfitting.vtt |
5.87KB |
01. What is sklearn and How is it Different from Other Packages.mp4 |
8.48MB |
01. What is sklearn and How is it Different from Other Packages.vtt |
3.62KB |
01. What to Expect from the Following Sections.html |
2.48KB |
01. What to Expect from this Part.mp4 |
11.72MB |
01. What to Expect from this Part.vtt |
4.83KB |
02. 1.02.Multiple-linear-regression.csv |
1.09KB |
02. 1.04.Real-life-example.csv |
219.83KB |
02. 2.01.Admittance.csv |
1.58KB |
02. 2.13.Practical-example.Descriptive-statistics-exercise.xlsx |
120.27KB |
02. 2.13.Practical-example.Descriptive-statistics-exercise-solution.xlsx |
146.38KB |
02. 3.01.Country-clusters.csv |
200B |
02. 3.17.Practical-example.Confidence-intervals-exercise.xlsx |
1.73MB |
02. 3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx |
1.82MB |
02. 3.2.What-is-a-distribution-lesson.xlsx |
19.46KB |
02. 3.9.Population-variance-known-z-score-lesson.xlsx |
11.21KB |
02. 3.9.The-z-table.xlsx |
25.58KB |
02. 4.10.Hypothesis-testing-section-practical-example-exercise.xlsx |
43.69KB |
02. 4.10.Hypothesis-testing-section-practical-example-exercise-solution.xlsx |
44.27KB |
02. Absenteeism-predictions.csv |
2.10KB |
02. Add-an-Else-Statement-Exercise-Py3.ipynb |
1.02KB |
02. Add-an-Else-Statement-Lecture-Py3.ipynb |
1.76KB |
02. Add-an-Else-Statement-Solution-Py3.ipynb |
1.40KB |
02. Adjusted R-Squared.mp4 |
34.20MB |
02. Adjusted R-Squared.vtt |
7.51KB |
02. Admittance.ipynb |
3.54KB |
02. Admittance-with-comments.ipynb |
5.32KB |
02. Analyzing Age vs Probability in Tableau.mp4 |
38.68MB |
02. Analyzing Age vs Probability in Tableau.vtt |
10.24KB |
02. A Note on Completing the Upcoming Coding Exercises.html |
2.96KB |
02. A Simple Example in Python.mp4 |
21.88MB |
02. A Simple Example in Python.vtt |
5.91KB |
02. A Simple Example of Clustering.mp4 |
34.18MB |
02. A Simple Example of Clustering.vtt |
9.74KB |
02. Basic NN Example (Part 2).mp4 |
15.23MB |
02. Basic NN Example (Part 2).vtt |
6.69KB |
02. Business Case Outlining the Solution.mp4 |
3.04MB |
02. Business Case Outlining the Solution.mp4 |
4.16MB |
02. Business Case Outlining the Solution.vtt |
1.91KB |
02. Business Case Outlining the Solution.vtt |
2.60KB |
02. Computing Expected Values.mp4 |
45.66MB |
02. Computing Expected Values.vtt |
6.95KB |
02. Confidence Intervals; Population Variance Known; Z-score.mp4 |
52.16MB |
02. Confidence Intervals; Population Variance Known; Z-score.vtt |
9.61KB |
02. Correlation vs Regression.mp4 |
3.84MB |
02. Correlation vs Regression.vtt |
2.16KB |
02. Country-clusters.ipynb |
3.31KB |
02. Country-clusters-with-comments.ipynb |
5.80KB |
02. Course-Notes-Cluster-Analysis.pdf |
208.65KB |
02. Course-notes-inferential-statistics.pdf |
382.32KB |
02. Course-Notes-Logistic-Regression.pdf |
335.17KB |
02. Course-Notes-Section-2.pdf |
578.08KB |
02. Course-Notes-Section-6.pdf |
936.42KB |
02. Creating-a-Function-with-a-Parameter-Exercise-Py3.ipynb |
1.16KB |
02. Creating-a-Function-with-a-Parameter-Lecture-Py3.ipynb |
1.59KB |
02. Creating-a-Function-with-a-Parameter-Solution-Py3.ipynb |
1.79KB |
02. Creating the Targets for the Logistic Regression.mp4 |
32.44MB |
02. Creating the Targets for the Logistic Regression.vtt |
8.72KB |
02. Dendrogram.mp4 |
18.29MB |
02. Dendrogram.vtt |
7.58KB |
02. Deploying the 'absenteeism_module' - Part I.mp4 |
19.67MB |
02. Deploying the 'absenteeism_module' - Part I.vtt |
4.98KB |
02. Further Reading on Null and Alternative Hypothesis.html |
2.29KB |
02. Help-Yourself-with-Methods-Exercise-Py3.ipynb |
1.91KB |
02. Help-Yourself-with-Methods-Lecture-Py3.ipynb |
4.39KB |
02. Help-Yourself-with-Methods-Solution-Py3.ipynb |
2.83KB |
02. How are we Going to Approach this Section.mp4 |
5.30MB |
02. How are we Going to Approach this Section.vtt |
3.03KB |
02. How to Create a Function with a Parameter.mp4 |
9.99MB |
02. How to Create a Function with a Parameter.vtt |
4.52KB |
02. How to install ChatGPT.mp4 |
5.22MB |
02. How to install ChatGPT.vtt |
2.05KB |
02. How to Install TensorFlow 1.mp4 |
5.00MB |
02. How to Install TensorFlow 1.vtt |
3.40KB |
02. Importing the Absenteeism Data in Python.mp4 |
19.52MB |
02. Importing the Absenteeism Data in Python.vtt |
4.04KB |
02. Iterating Over Range Objects.mp4 |
12.61MB |
02. Iterating Over Range Objects.vtt |
6.43KB |
02. Levels of Measurement.mp4 |
32.19MB |
02. Levels of Measurement.vtt |
4.83KB |
02. Logical and Identity Operators.mp4 |
19.01MB |
02. Logical and Identity Operators.vtt |
5.97KB |
02. Logical-and-Identity-Operators-Lecture-Py3.ipynb |
5.86KB |
02. Logical-and-Identity-Operators-Solution-Py3.ipynb |
3.43KB |
02. Minimal-example-Part-2.ipynb |
3.65KB |
02. MNIST How to Tackle the MNIST.mp4 |
7.94MB |
02. MNIST How to Tackle the MNIST.mp4 |
8.01MB |
02. MNIST How to Tackle the MNIST.vtt |
3.63KB |
02. MNIST How to Tackle the MNIST.vtt |
3.84KB |
02. Modules and Packages.mp4 |
2.08MB |
02. Modules and Packages.vtt |
1.45KB |
02. Multiple-linear-regression-and-Adjusted-R-squared.ipynb |
2.15KB |
02. Multiple-linear-regression-and-Adjusted-R-squared-with-comments.ipynb |
2.80KB |
02. Numbers-and-Boolean-Values-Exercise-Py3.ipynb |
2.29KB |
02. Numbers and Boolean Values in Python.mp4 |
6.57MB |
02. Numbers and Boolean Values in Python.vtt |
3.75KB |
02. Numbers-and-Boolean-Values-Lecture-Py3.ipynb |
3.36KB |
02. Numbers-and-Boolean-Values-Solution-Py3.ipynb |
3.23KB |
02. Permutations and How to Use Them.mp4 |
17.52MB |
02. Permutations and How to Use Them.vtt |
4.41KB |
02. Practical Example Descriptive Statistics Exercise.html |
81B |
02. Practical Example Hypothesis Testing Exercise.html |
81B |
02. Practical Example Inferential Statistics Exercise.html |
81B |
02. Practical Example Linear Regression (Part 2).mp4 |
31.86MB |
02. Practical Example Linear Regression (Part 2).vtt |
8.33KB |
02. Probability in Statistics.mp4 |
31.60MB |
02. Probability in Statistics.vtt |
9.12KB |
02. Problems with Gradient Descent.mp4 |
3.65MB |
02. Problems with Gradient Descent.vtt |
2.99KB |
02. Real Life Examples of Traditional Data.mp4 |
18.37MB |
02. Real Life Examples of Traditional Data.vtt |
2.33KB |
02. Scalars and Vectors.mp4 |
8.54MB |
02. Scalars and Vectors.vtt |
4.01KB |
02. sklearn-Linear-Regression-Practical-Example-Part-2.ipynb |
328.74KB |
02. sklearn-Linear-Regression-Practical-Example-Part-2-with-comments.ipynb |
335.63KB |
02. Some Examples of Clusters.mp4 |
35.86MB |
02. Some Examples of Clusters.vtt |
6.25KB |
02. TensorFlow Outline and Comparison with Other Libraries.mp4 |
15.29MB |
02. TensorFlow Outline and Comparison with Other Libraries.vtt |
5.49KB |
02. The Business Task.mp4 |
11.28MB |
02. The Business Task.vtt |
4.07KB |
02. The Double Equality Sign.mp4 |
2.72MB |
02. The Double Equality Sign.vtt |
1.90KB |
02. The-Double-Equality-Sign-Exercise-Py3.ipynb |
838B |
02. The-Double-Equality-Sign-Lecture-Py3.ipynb |
1.45KB |
02. The-Double-Equality-Sign-Solution-Py3.ipynb |
1.14KB |
02. The ELSE Statement.mp4 |
6.04MB |
02. The ELSE Statement.vtt |
3.25KB |
02. The Naive Bayes Algorithm.mp4 |
42.06MB |
02. The Naive Bayes Algorithm.vtt |
6.08KB |
02. Training the Model.mp4 |
7.72MB |
02. Training the Model.vtt |
4.74KB |
02. Types of Basic Preprocessing.mp4 |
3.25MB |
02. Types of Basic Preprocessing.vtt |
1.85KB |
02. Types of Probability Distributions.mp4 |
35.59MB |
02. Types of Probability Distributions.vtt |
10.44KB |
02. Types of Simple Initializations.mp4 |
5.73MB |
02. Types of Simple Initializations.vtt |
3.78KB |
02. Underfitting and Overfitting for Classification.mp4 |
14.01MB |
02. Underfitting and Overfitting for Classification.vtt |
2.83KB |
02. Using Methods.mp4 |
30.36MB |
02. Using Methods.vtt |
8.72KB |
02. Ways Sets Can Interact.mp4 |
11.33MB |
02. Ways Sets Can Interact.vtt |
4.62KB |
02. What's Further out there in terms of Machine Learning.mp4 |
4.79MB |
02. What's Further out there in terms of Machine Learning.vtt |
2.70KB |
02. What are Data Connectivity, APIs, and Endpoints.mp4 |
60.22MB |
02. What are Data Connectivity, APIs, and Endpoints.vtt |
9.17KB |
02. What Does the Course Cover.mp4 |
9.56MB |
02. What Does the Course Cover.vtt |
5.44KB |
02. What is a Deep Net.mp4 |
9.13MB |
02. What is a Deep Net.vtt |
3.26KB |
02. What is a Distribution.mp4 |
17.20MB |
02. What is a Distribution.vtt |
5.90KB |
02. What is the difference between Analysis and Analytics.mp4 |
11.16MB |
02. What is the difference between Analysis and Analytics.vtt |
5.12KB |
02. While Loops and Incrementing.mp4 |
20.18MB |
02. While Loops and Incrementing.vtt |
6.05KB |
02. While-Loops-and-Incrementing-Exercise-Py3.ipynb |
1.12KB |
02. While-Loops-and-Incrementing-Lecture-Py3.ipynb |
1.08KB |
02. While-Loops-and-Incrementing-Solution-Py3.ipynb |
1.75KB |
02. Why Python.mp4 |
12.19MB |
02. Why Python.vtt |
7.17KB |
03. 1.01.Simple-linear-regression.csv |
922B |
03. 12.3.TensorFlow-MNIST-with-comments-Part-1.ipynb |
3.89KB |
03. 2.3.Categorical-variables.Visualization-techniques-lesson.xlsx |
30.77KB |
03. 3.9.Population-variance-known-z-score-exercise.xlsx |
10.83KB |
03. 3.9.Population-variance-known-z-score-exercise-solution.xlsx |
11.16KB |
03. 3.9.The-z-table.xlsx |
25.58KB |
03. 365-DataScience-Diagram.pdf |
323.08KB |
03. A Note on Installing Packages in Anaconda.html |
2.28KB |
03. A Note on Multicollinearity.html |
849B |
03. Another-Way-to-Define-a-Function-Exercise-Py3.ipynb |
1.24KB |
03. Another-Way-to-Define-a-Function-Lecture-Py3.ipynb |
3.29KB |
03. Another-Way-to-Define-a-Function-Solution-Py3.ipynb |
1.98KB |
03. A Simple Example of Clustering - Exercise.html |
87B |
03. A-Simple-Example-of-Clustering-Exercise.ipynb |
3.62KB |
03. A-Simple-Example-of-Clustering-Solution.ipynb |
4.65KB |
03. Audiobooks-data.csv |
710.77KB |
03. Basic NN Example (Part 3).mp4 |
15.66MB |
03. Basic NN Example (Part 3).vtt |
4.40KB |
03. Business Analytics, Data Analytics, and Data Science An Introduction.mp4 |
14.60MB |
03. Business Analytics, Data Analytics, and Data Science An Introduction.vtt |
9.62KB |
03. Business Case Balancing the Dataset.mp4 |
22.32MB |
03. Business Case Balancing the Dataset.vtt |
4.32KB |
03. Categorical Variables - Visualization Techniques.mp4 |
27.49MB |
03. Categorical Variables - Visualization Techniques.vtt |
6.71KB |
03. Characteristics of Discrete Distributions.mp4 |
9.42MB |
03. Characteristics of Discrete Distributions.vtt |
2.56KB |
03. Checking the Content of the Data Set.mp4 |
53.99MB |
03. Checking the Content of the Data Set.vtt |
7.14KB |
03. Confidence Intervals; Population Variance Known; Z-score; Exercise.html |
81B |
03. Countries-exercise.csv |
8.27KB |
03. Country-clusters-standardized.csv |
244B |
03. Course-notes-hypothesis-testing.pdf |
656.44KB |
03. Create-Lists-with-the-range-Function-Exercise-Py3.ipynb |
1.45KB |
03. Create-Lists-with-the-range-Function-Lecture-Py3.ipynb |
1.34KB |
03. Create-Lists-with-the-range-Function-Solution-Py3.ipynb |
2.25KB |
03. DeepMind and Deep Learning.html |
1.05KB |
03. Defining a Function in Python - Part II.mp4 |
6.45MB |
03. Defining a Function in Python - Part II.vtt |
3.07KB |
03. Deploying the 'absenteeism_module' - Part II.mp4 |
45.14MB |
03. Deploying the 'absenteeism_module' - Part II.vtt |
8.03KB |
03. Difference between Classification and Clustering.mp4 |
9.67MB |
03. Difference between Classification and Clustering.vtt |
3.62KB |
03. Digging into a Deep Net.mp4 |
23.68MB |
03. Digging into a Deep Net.vtt |
6.90KB |
03. Download All Resources and Important FAQ.html |
21.34KB |
03. Else-If-for-Brief-Elif-Exercise-Py3.ipynb |
1.75KB |
03. Else-If-for-Brief-Elif-Lecture-Py3.ipynb |
3.24KB |
03. Else-If-for-Brief-Elif-Solution-Py3.ipynb |
2.40KB |
03. EXERCISE - Reasons vs Probability.html |
397B |
03. FAQ-The-Data-Science-Course.pdf |
306.10KB |
03. Frequency.mp4 |
37.37MB |
03. Frequency.vtt |
6.93KB |
03. Geometrical Representation of the Linear Regression Model.mp4 |
2.27MB |
03. Geometrical Representation of the Linear Regression Model.vtt |
1.74KB |
03. Heatmaps.ipynb |
1.82KB |
03. Heatmaps.mp4 |
18.50MB |
03. Heatmaps.vtt |
6.18KB |
03. Heatmaps-with-comments.ipynb |
17.66KB |
03. How ChatGPT can boost your productivity.mp4 |
5.38MB |
03. How ChatGPT can boost your productivity.vtt |
2.44KB |
03. How to Reassign Values.mp4 |
1.86MB |
03. How to Reassign Values.vtt |
1.32KB |
03. Intersection of Sets.mp4 |
11.02MB |
03. Intersection of Sets.vtt |
2.59KB |
03. Introducing the Data Set.mp4 |
24.24MB |
03. Introducing the Data Set.vtt |
4.34KB |
03. Introduction to Nested For Loops.mp4 |
12.17MB |
03. Introduction to Nested For Loops.vtt |
8.52KB |
03. Linear Algebra and Geometry.mp4 |
13.73MB |
03. Linear Algebra and Geometry.vtt |
4.10KB |
03. List Slicing.mp4 |
19.17MB |
03. List Slicing.vtt |
5.53KB |
03. List-Slicing-Exercise-Py3.ipynb |
2.79KB |
03. List-Slicing-Lecture-Py3.ipynb |
5.02KB |
03. List-Slicing-Solution-Py3.ipynb |
4.29KB |
03. Lists with the range() Function.mp4 |
16.07MB |
03. Lists with the range() Function.vtt |
8.58KB |
03. Logistic vs Logit Function.mp4 |
23.74MB |
03. Logistic vs Logit Function.vtt |
5.07KB |
03. Minimal-example-Part-3.ipynb |
6.79KB |
03. MNIST Importing the Relevant Packages and Loading the Data.mp4 |
12.23MB |
03. MNIST Importing the Relevant Packages and Loading the Data.vtt |
3.05KB |
03. MNIST Relevant Packages.mp4 |
11.25MB |
03. MNIST Relevant Packages.vtt |
2.19KB |
03. Momentum.mp4 |
5.18MB |
03. Momentum.vtt |
3.59KB |
03. Multiple Linear Regression Exercise.html |
76B |
03. Multiple-Linear-Regression-Exercise.ipynb |
2.45KB |
03. Multiple-Linear-Regression-Exercise-Solution.ipynb |
13.39KB |
03. Probability-Cheat-Sheet.pdf |
320.28KB |
03. Probability in Data Science.mp4 |
14.24MB |
03. Probability in Data Science.vtt |
7.11KB |
03. Python Strings.mp4 |
19.72MB |
03. Python Strings.vtt |
7.65KB |
03. real-estate-price-size-year.csv |
2.35KB |
03. Reassign-Values-Exercise-Py3.ipynb |
1.67KB |
03. Reassign-Values-Lecture-Py3.ipynb |
3.08KB |
03. Reassign-Values-Solution-Py3.ipynb |
2.12KB |
03. Rejection Region and Significance Level.mp4 |
38.68MB |
03. Rejection Region and Significance Level.vtt |
8.62KB |
03. Selecting the Inputs for the Logistic Regression.mp4 |
8.67MB |
03. Selecting the Inputs for the Logistic Regression.vtt |
3.58KB |
03. Simple Linear Regression with sklearn.mp4 |
27.45MB |
03. Simple Linear Regression with sklearn.vtt |
7.61KB |
03. Simple Operations with Factorials.mp4 |
10.51MB |
03. Simple Operations with Factorials.vtt |
3.39KB |
03. sklearn-Simple-Linear-Regression.ipynb |
4.92KB |
03. sklearn-Simple-Linear-Regression-with-comments.ipynb |
6.06KB |
03. Standardization.mp4 |
12.07MB |
03. Standardization.vtt |
6.14KB |
03. State-of-the-Art Method - (Xavier) Glorot Initialization.mp4 |
5.46MB |
03. State-of-the-Art Method - (Xavier) Glorot Initialization.vtt |
3.79KB |
03. Strings-Exercise-Py3.ipynb |
2.61KB |
03. Strings-Lecture-Py3.ipynb |
7.56KB |
03. Strings-Solution-Py3.ipynb |
5.45KB |
03. Taking a Closer Look at APIs.mp4 |
24.51MB |
03. Taking a Closer Look at APIs.vtt |
10.90KB |
03. Techniques for Working with Big Data.mp4 |
62.12MB |
03. Techniques for Working with Big Data.vtt |
5.84KB |
03. TensorFlow 1 vs TensorFlow 2.mp4 |
15.29MB |
03. TensorFlow 1 vs TensorFlow 2.vtt |
4.01KB |
03. TensorFlow-MNIST-Part1-with-comments.ipynb |
3.97KB |
03. The ELIF Statement.mp4 |
14.23MB |
03. The ELIF Statement.vtt |
6.81KB |
03. The Importance of Working with a Balanced Dataset.mp4 |
27.25MB |
03. The Importance of Working with a Balanced Dataset.vtt |
4.38KB |
03. The Normal Distribution.mp4 |
13.07MB |
03. The Normal Distribution.vtt |
5.20KB |
03. Tokenization and Vectorization.mp4 |
15.81MB |
03. Tokenization and Vectorization.vtt |
7.92KB |
03. Types of Machine Learning.mp4 |
13.05MB |
03. Types of Machine Learning.vtt |
5.48KB |
03. What is the Standard Library.mp4 |
5.05MB |
03. What is the Standard Library.vtt |
3.86KB |
03. What is Validation.mp4 |
8.38MB |
03. What is Validation.vtt |
4.99KB |
03. Why Jupyter.mp4 |
8.00MB |
03. Why Jupyter.vtt |
4.21KB |
03. Working with Methods in Python - Part I.mp4 |
13.21MB |
03. Working with Methods in Python - Part I.vtt |
7.21KB |
04. 0.6.4-Using-a-Function-in-another-Function-Exercise-Py3.ipynb |
1.04KB |
04. 0.6.4-Using-a-Function-in-another-Function-Lecture-Py3.ipynb |
1015B |
04. 0.6.4-Using-a-Function-in-another-Function-Solution-Py3.ipynb |
1.60KB |
04. 1.01.Simple-linear-regression.csv |
922B |
04. 12.4.TensorFlow-MNIST-with-comments-Part-2.ipynb |
6.10KB |
04. 2.3.Categorical-variables.Visualization-techniques-exercise.xlsx |
15.24KB |
04. 2.3.Categorical-variables.Visualization-techniques-exercise-solution.xlsx |
41.11KB |
04. 3.4.Standard-normal-distribution-lesson.xlsx |
10.38KB |
04. 365-DataScience.png |
6.92MB |
04. 365-DataScience-Diagram.pdf |
323.08KB |
04. Absenteeism-Exercise-Deploying-the-absenteeism-module.ipynb |
973B |
04. Add Comments.mp4 |
2.41MB |
04. Add Comments.vtt |
1.93KB |
04. Add-Comments-Lecture-Py3.ipynb |
1.03KB |
04. Admittance-regression.ipynb |
2.09KB |
04. Admittance-regression-summary-error.ipynb |
2.48KB |
04. Admittance-regression-tables-fixed-error.ipynb |
4.11KB |
04. Analyzing Reasons vs Probability in Tableau.mp4 |
40.25MB |
04. Analyzing Reasons vs Probability in Tableau.vtt |
9.67KB |
04. A Note on Boolean Values.mp4 |
4.24MB |
04. A Note on Boolean Values.vtt |
3.10KB |
04. A-Note-on-Boolean-Values-Lecture-Py3.ipynb |
791B |
04. A Note on TensorFlow 2 Syntax.mp4 |
4.64MB |
04. A Note on TensorFlow 2 Syntax.vtt |
1.43KB |
04. An overview of CNNs.mp4 |
13.39MB |
04. An overview of CNNs.vtt |
6.37KB |
04. Arrays in Python - A Convenient Way To Represent Matrices.mp4 |
18.98MB |
04. Arrays in Python - A Convenient Way To Represent Matrices.vtt |
6.20KB |
04. Audiobooks-data.csv |
710.77KB |
04. Basic NN Example (Part 4).mp4 |
39.97MB |
04. Basic NN Example (Part 4).vtt |
10.96KB |
04. Building a Logistic Regression.mp4 |
8.59MB |
04. Building a Logistic Regression.vtt |
3.51KB |
04. Business Case Preprocessing.mp4 |
74.41MB |
04. Business Case Preprocessing.vtt |
13.55KB |
04. Business Case Preprocessing the Data.mp4 |
73.85MB |
04. Business Case Preprocessing the Data.vtt |
13.62KB |
04. Categorical-data.ipynb |
3.35KB |
04. Categorical-data-with-comments.ipynb |
5.62KB |
04. Categorical Variables Exercise.html |
81B |
04. Clustering Categorical Data.mp4 |
10.35MB |
04. Clustering Categorical Data.vtt |
3.32KB |
04. Communication between Software Products through Text Files.mp4 |
17.54MB |
04. Communication between Software Products through Text Files.vtt |
5.83KB |
04. Conditional Statements and Loops.mp4 |
17.31MB |
04. Conditional Statements and Loops.vtt |
8.02KB |
04. Confidence Interval Clarifications.mp4 |
18.93MB |
04. Confidence Interval Clarifications.vtt |
5.61KB |
04. Continuing with BI, ML, and AI.mp4 |
47.55MB |
04. Continuing with BI, ML, and AI.vtt |
13.13KB |
04. Data-Preprocessing-Medical-Data.ipynb |
7.49KB |
04. Data Preprocessing with ChatGPT.mp4 |
28.73MB |
04. Data Preprocessing with ChatGPT.vtt |
6.41KB |
04. Discrete Distributions The Uniform Distribution.mp4 |
10.30MB |
04. Discrete Distributions The Uniform Distribution.vtt |
2.90KB |
04. Events and Their Complements.mp4 |
25.84MB |
04. Events and Their Complements.vtt |
7.13KB |
04. Exporting the Obtained Data Set as a .csv.html |
998B |
04. How to Use a Function within a Function.mp4 |
3.24MB |
04. How to Use a Function within a Function.vtt |
2.10KB |
04. Imbalanced Data Sets.mp4 |
6.55MB |
04. Imbalanced Data Sets.vtt |
3.27KB |
04. Importing Modules in Python.mp4 |
9.87MB |
04. Importing Modules in Python.vtt |
4.86KB |
04. Installing Python and Jupyter.mp4 |
18.81MB |
04. Installing Python and Jupyter.vtt |
4.87KB |
04. Introduction to Terms with Multiple Meanings.mp4 |
17.98MB |
04. Introduction to Terms with Multiple Meanings.vtt |
4.33KB |
04. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4 |
17.52MB |
04. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.vtt |
6.33KB |
04. Math Prerequisites.mp4 |
5.27MB |
04. Math Prerequisites.vtt |
4.37KB |
04. Minimal-example-Part-4-Complete.ipynb |
11.41KB |
04. MNIST Model Outline.mp4 |
34.70MB |
04. MNIST Model Outline.vtt |
9.17KB |
04. MNIST Preprocess the Data - Create a Validation Set and Scale It.mp4 |
22.90MB |
04. MNIST Preprocess the Data - Create a Validation Set and Scale It.vtt |
6.49KB |
04. Non-Linearities and their Purpose.mp4 |
22.51MB |
04. Non-Linearities and their Purpose.vtt |
4.25KB |
04. patients.csv |
2.93KB |
04. Practical Example Linear Regression (Part 3).mp4 |
16.67MB |
04. Practical Example Linear Regression (Part 3).vtt |
4.48KB |
04. Preprocessing Categorical Data.mp4 |
5.44MB |
04. Preprocessing Categorical Data.vtt |
2.85KB |
04. Python Packages Installation.mp4 |
23.67MB |
04. Python Packages Installation.vtt |
5.56KB |
04. Real Life Examples of Big Data.mp4 |
13.05MB |
04. Real Life Examples of Big Data.vtt |
1.89KB |
04. Scalars-Vectors-and-Matrices.ipynb |
4.55KB |
04. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp4 |
22.29MB |
04. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.vtt |
6.78KB |
04. sklearn-Linear-Regression-Practical-Example-Part-3.ipynb |
343.58KB |
04. sklearn-Linear-Regression-Practical-Example-Part-3-with-comments.ipynb |
351.47KB |
04. sklearn-Simple-Linear-Regression.ipynb |
26.07KB |
04. sklearn-Simple-Linear-Regression-with-comments.ipynb |
28.35KB |
04. Solving Variations with Repetition.mp4 |
13.95MB |
04. Solving Variations with Repetition.vtt |
3.75KB |
04. Standardizing the Data.mp4 |
15.15MB |
04. Standardizing the Data.vtt |
4.29KB |
04. Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf |
289.12KB |
04. TensorFlow-Audiobooks-Preprocessing.ipynb |
5.58KB |
04. TensorFlow-Audiobooks-Preprocessing.ipynb |
5.58KB |
04. TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb |
11.19KB |
04. TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb |
11.19KB |
04. TensorFlow Intro.mp4 |
16.90MB |
04. TensorFlow Intro.vtt |
5.32KB |
04. Test for Significance of the Model (F-Test).mp4 |
7.18MB |
04. Test for Significance of the Model (F-Test).vtt |
2.46KB |
04. The Linear Model (Linear Algebraic Version).mp4 |
7.98MB |
04. The Linear Model (Linear Algebraic Version).vtt |
3.69KB |
04. The Standard Normal Distribution.mp4 |
8.60MB |
04. The Standard Normal Distribution.vtt |
4.03KB |
04. Training, Validation, and Test Datasets.mp4 |
9.40MB |
04. Training, Validation, and Test Datasets.vtt |
3.44KB |
04. Triple Nested For Loops.mp4 |
33.00MB |
04. Triple Nested For Loops.vtt |
8.49KB |
04. Tuples.mp4 |
18.21MB |
04. Tuples.vtt |
7.49KB |
04. Tuples-Exercise-Py3.ipynb |
2.07KB |
04. Tuples-Lecture-Py3.ipynb |
2.91KB |
04. Tuples-Solution-Py3.ipynb |
4.61KB |
04. Type I Error and Type II Error.mp4 |
15.29MB |
04. Type I Error and Type II Error.vtt |
5.51KB |
04. Union of Sets.mp4 |
24.18MB |
04. Union of Sets.vtt |
6.25KB |
04. Use-Conditional-Statements-and-Loops-Together-Exercise-Py3.ipynb |
2.10KB |
04. Use-Conditional-Statements-and-Loops-Together-Lecture-Py3.ipynb |
1.95KB |
04. Use-Conditional-Statements-and-Loops-Together-Solution-Py3.ipynb |
2.96KB |
04. Working with Methods in Python - Part II.mp4 |
9.01MB |
04. Working with Methods in Python - Part II.vtt |
3.93KB |
05. 1.01.Simple-linear-regression.csv |
922B |
05. 1.04.Real-life-example.csv |
219.83KB |
05. 12.5.TensorFlow-MNIST-with-comments-Part-3.ipynb |
7.31KB |
05. 2.4.Numerical-variables.Frequency-distribution-table-lesson.xlsx |
11.44KB |
05. 3.4.Standard-normal-distribution-exercise.xlsx |
11.99KB |
05. 3.4.Standard-normal-distribution-exercise-solution.xlsx |
24.04KB |
05. 4.4.Test-for-the-mean.Population-variance-known-lesson.xlsx |
10.96KB |
05. Activation Functions.mp4 |
8.85MB |
05. Activation Functions.vtt |
5.26KB |
05. Actual Introduction to TensorFlow.mp4 |
9.05MB |
05. Actual Introduction to TensorFlow.vtt |
2.33KB |
05. All-In-Exercise-Py3.ipynb |
1.30KB |
05. All-In-Lecture-Py3.ipynb |
1.62KB |
05. All-In-Solution-Py3.ipynb |
1.90KB |
05. A Note on Normalization.html |
733B |
05. An Overview of RNNs.mp4 |
6.96MB |
05. An Overview of RNNs.vtt |
3.96KB |
05. Audiobooks-data.csv |
710.77KB |
05. Basic NN Example Exercises.html |
1.66KB |
05. Binary and One-Hot Encoding.mp4 |
8.55MB |
05. Binary and One-Hot Encoding.vtt |
5.31KB |
05. Building a Logistic Regression - Exercise.html |
87B |
05. Building-a-Logistic-Regression-Exercise.ipynb |
2.92KB |
05. Building-a-Logistic-Regression-Solution.ipynb |
4.44KB |
05. Business Case Preprocessing Exercise.html |
389B |
05. Business Case Preprocessing the Data - Exercise.html |
370B |
05. Business Intelligence (BI) Techniques.mp4 |
52.91MB |
05. Business Intelligence (BI) Techniques.vtt |
8.82KB |
05. Categorical.csv |
10.34KB |
05. Clustering Categorical Data - Exercise.html |
87B |
05. Clustering-Categorical-Data-Exercise.ipynb |
3.78KB |
05. Clustering-Categorical-Data-Solution.ipynb |
4.90KB |
05. Combining-Conditional-Statements-and-Functions-Exercise-Py3.ipynb |
1.06KB |
05. Combining-Conditional-Statements-and-Functions-Lecture-Py3.ipynb |
1.29KB |
05. Combining-Conditional-Statements-and-Functions-Solution-Py3.ipynb |
1.65KB |
05. Conditional Statements, Functions, and Loops.mp4 |
4.27MB |
05. Conditional Statements, Functions, and Loops.vtt |
2.47KB |
05. Conditional Statements and Functions.mp4 |
6.05MB |
05. Conditional Statements and Functions.vtt |
3.59KB |
05. diagnosis-mapping.csv |
90B |
05. Dictionaries.mp4 |
32.44MB |
05. Dictionaries.vtt |
8.87KB |
05. Dictionaries-Exercise-Py3.ipynb |
2.92KB |
05. Dictionaries-Lecture-Py3.ipynb |
4.35KB |
05. Dictionaries-Solution-Py3.ipynb |
6.16KB |
05. Discrete Distributions The Bernoulli Distribution.mp4 |
15.12MB |
05. Discrete Distributions The Bernoulli Distribution.vtt |
5.22KB |
05. Dummies and Variance Inflation Factor - Exercise.html |
76B |
05. Example-bank-data.csv |
6.21KB |
05. EXERCISE - Transportation Expense vs Probability.html |
553B |
05. First attempt at machine learning with ChatGPT.mp4 |
36.72MB |
05. First attempt at machine learning with ChatGPT.vtt |
6.39KB |
05. First Regression in Python.mp4 |
29.60MB |
05. First Regression in Python.vtt |
8.25KB |
05. Learning Rate Schedules Visualized.mp4 |
3.17MB |
05. Learning Rate Schedules Visualized.vtt |
2.25KB |
05. Line-Continuation-Exercise-Py3.ipynb |
1.14KB |
05. Line-Continuation-Lecture-Py3.ipynb |
779B |
05. Line-Continuation-Solution-Py3.ipynb |
1.50KB |
05. List Comprehensions.mp4 |
43.21MB |
05. List Comprehensions.vtt |
12.83KB |
05. Medical-Data-ML-Attempt.ipynb |
4.36KB |
05. Minimal-example-All-Exercises.ipynb |
12.89KB |
05. Minimal-example-Exercise-1-Solution.ipynb |
69.00KB |
05. Minimal-example-Exercise-2-Solution.ipynb |
61.41KB |
05. Minimal-example-Exercise-3.a.Solution.ipynb |
67.89KB |
05. Minimal-example-Exercise-3.b.Solution.ipynb |
67.72KB |
05. Minimal-example-Exercise-3.c.Solution.ipynb |
70.13KB |
05. Minimal-example-Exercise-3.d.Solution.ipynb |
84.13KB |
05. Minimal-example-Exercise-4-Solution.ipynb |
66.52KB |
05. Minimal-example-Exercise-5-Solution.ipynb |
68.88KB |
05. Minimal-example-Exercise-6.ipynb |
61.76KB |
05. Minimal-example-Exercise-6-Solution.ipynb |
61.76KB |
05. MNIST Loss and Optimization Algorithm.mp4 |
15.79MB |
05. MNIST Loss and Optimization Algorithm.vtt |
3.57KB |
05. MNIST Preprocess the Data - Scale the Test Data - Exercise.html |
79B |
05. Mutually Exclusive Sets.mp4 |
10.58MB |
05. Mutually Exclusive Sets.vtt |
2.76KB |
05. N-Fold Cross Validation.mp4 |
6.24MB |
05. N-Fold Cross Validation.vtt |
4.37KB |
05. Numerical Variables - Frequency Distribution Table.mp4 |
17.70MB |
05. Numerical Variables - Frequency Distribution Table.vtt |
4.45KB |
05. OLS Assumptions.mp4 |
5.26MB |
05. OLS Assumptions.vtt |
3.06KB |
05. Overcome Imbalanced Data in Machine Learning.mp4 |
14.59MB |
05. Overcome Imbalanced Data in Machine Learning.vtt |
5.04KB |
05. Parameters and Arguments in pandas.mp4 |
21.13MB |
05. Parameters and Arguments in pandas.vtt |
5.79KB |
05. patients-preprocessed.csv |
3.29KB |
05. Shortcuts-for-Jupyter.pdf |
619.17KB |
05. Simple-linear-regression.ipynb |
3.79KB |
05. Simple-linear-regression-with-comments.ipynb |
4.06KB |
05. sklearn-Dummies-and-VIF-Exercise.ipynb |
344.62KB |
05. sklearn-Dummies-and-VIF-Exercise-Solution.ipynb |
370.22KB |
05. Software Integration - Explained.mp4 |
16.00MB |
05. Software Integration - Explained.vtt |
7.00KB |
05. Solving Variations without Repetition.mp4 |
18.25MB |
05. Solving Variations without Repetition.vtt |
4.94KB |
05. Splitting the Data for Training and Testing.mp4 |
36.06MB |
05. Splitting the Data for Training and Testing.vtt |
8.49KB |
05. Student's T Distribution.mp4 |
13.68MB |
05. Student's T Distribution.vtt |
4.56KB |
05. TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb |
8.60KB |
05. TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb |
8.60KB |
05. TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb |
10.04KB |
05. TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb |
10.03KB |
05. TensorFlow-Minimal-example-Part1.ipynb |
1.66KB |
05. TensorFlow-MNIST-Part2-with-comments.ipynb |
6.39KB |
05. Tensors.ipynb |
2.08KB |
05. Test for the Mean. Population Variance Known.mp4 |
36.94MB |
05. Test for the Mean. Population Variance Known.vtt |
8.07KB |
05. The Linear Model with Multiple Inputs.mp4 |
7.91MB |
05. The Linear Model with Multiple Inputs.vtt |
2.81KB |
05. The Standard Normal Distribution Exercise.html |
81B |
05. Traditional AI vs. Generative AI.mp4 |
24.51MB |
05. Traditional AI vs. Generative AI.vtt |
6.92KB |
05. Types of File Formats Supporting TensorFlow.mp4 |
8.86MB |
05. Types of File Formats Supporting TensorFlow.vtt |
3.45KB |
05. Understanding Jupyter's Interface - the Notebook Dashboard.mp4 |
6.07MB |
05. Understanding Jupyter's Interface - the Notebook Dashboard.vtt |
3.73KB |
05. Understanding Line Continuation.mp4 |
1.20MB |
05. Understanding Line Continuation.vtt |
1.15KB |
05. What's Regression Analysis - a Quick Refresher.html |
2.84KB |
05. What is a Tensor.mp4 |
15.54MB |
05. What is a Tensor.vtt |
3.81KB |
06. 1.04.Real-life-example.csv |
219.83KB |
06. 12.6.TensorFlow-MNIST-with-comments-Part-4.ipynb |
7.90KB |
06. 2.4.Numerical-variables.Frequency-distribution-table-exercise-solution.xlsx |
13.15KB |
06. 3.11.Population-variance-unknown-t-score-lesson.xlsx |
10.78KB |
06. 3.11.The-t-table.xlsx |
15.85KB |
06. 4.4.Test-for-the-mean.Population-variance-known-exercise.xlsx |
11.03KB |
06. 4.4.Test-for-the-mean.Population-variance-known-exercise-solution.xlsx |
11.22KB |
06. 5.3.TensorFlow-Minimal-example-Part-1.ipynb |
3.36KB |
06. A1 Linearity.mp4 |
3.57MB |
06. A1 Linearity.vtt |
2.49KB |
06. Activation Functions Softmax Activation.mp4 |
8.74MB |
06. Activation Functions Softmax Activation.vtt |
4.48KB |
06. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).mp4 |
8.53MB |
06. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).vtt |
5.57KB |
06. Adding-and-subtracting-matrices.ipynb |
3.22KB |
06. Additional-Python-Tools-Exercises.ipynb |
11.41KB |
06. Additional-Python-Tools-Lectures.ipynb |
13.47KB |
06. Additional-Python-Tools-Solutions.ipynb |
25.52KB |
06. Addition and Subtraction of Matrices.mp4 |
22.10MB |
06. Addition and Subtraction of Matrices.vtt |
4.24KB |
06. Analyzing a client database with ChatGPT in Python.mp4 |
21.62MB |
06. Analyzing a client database with ChatGPT in Python.vtt |
5.17KB |
06. Analyzing Transportation Expense vs Probability in Tableau.mp4 |
16.48MB |
06. Analyzing Transportation Expense vs Probability in Tableau.vtt |
7.65KB |
06. An Invaluable Coding Tip.mp4 |
18.78MB |
06. An Invaluable Coding Tip.vtt |
3.15KB |
06. Anonymous (Lambda) Functions.mp4 |
22.78MB |
06. Anonymous (Lambda) Functions.vtt |
10.46KB |
06. An Overview of non-NN Approaches.mp4 |
16.08MB |
06. An Overview of non-NN Approaches.vtt |
5.74KB |
06. Business Case Load the Preprocessed Data.mp4 |
13.81MB |
06. Business Case Load the Preprocessed Data.vtt |
4.67KB |
06. Calculating the Accuracy of the Model.mp4 |
24.45MB |
06. Calculating the Accuracy of the Model.vtt |
5.30KB |
06. Central Limit Theorem.mp4 |
23.22MB |
06. Central Limit Theorem.vtt |
5.61KB |
06. Combinations-With-Repetition.pdf |
207.41KB |
06. Confidence Intervals; Population Variance Unknown; T-score.mp4 |
13.69MB |
06. Confidence Intervals; Population Variance Unknown; T-score.vtt |
5.40KB |
06. Creating a Data Provider.mp4 |
56.30MB |
06. Creating a Data Provider.vtt |
8.25KB |
06. Creating-Functions-Containing-a-Few-Arguments-Lecture-Py3.ipynb |
1.72KB |
06. customers.csv |
1.56KB |
06. Dependence and Independence of Sets.mp4 |
14.92MB |
06. Dependence and Independence of Sets.vtt |
3.47KB |
06. Discrete Distributions The Binomial Distribution.mp4 |
30.60MB |
06. Discrete Distributions The Binomial Distribution.vtt |
8.82KB |
06. Early Stopping or When to Stop Training.mp4 |
10.29MB |
06. Early Stopping or When to Stop Training.vtt |
6.97KB |
06. First Regression in Python Exercise.html |
1.33KB |
06. Fitting the Model and Assessing its Accuracy.mp4 |
15.22MB |
06. Fitting the Model and Assessing its Accuracy.vtt |
7.29KB |
06. Functions Containing a Few Arguments.mp4 |
2.81MB |
06. Functions Containing a Few Arguments.vtt |
1.44KB |
06. How to Choose the Number of Clusters.mp4 |
26.87MB |
06. How to Choose the Number of Clusters.vtt |
7.57KB |
06. How to Iterate over Dictionaries.mp4 |
18.38MB |
06. How to Iterate over Dictionaries.vtt |
7.82KB |
06. Indexing Elements.mp4 |
2.36MB |
06. Indexing Elements.vtt |
1.67KB |
06. Indexing-Elements-Exercise-Py3.ipynb |
1.35KB |
06. Indexing-Elements-Lecture-Py3.ipynb |
1.32KB |
06. Indexing-Elements-Solution-Py3.ipynb |
2.17KB |
06. Iterating-over-Dictionaries-Exercise-Py3.ipynb |
2.19KB |
06. Iterating-over-Dictionaries-Lecture-Py3.ipynb |
1.08KB |
06. Iterating-over-Dictionaries-Solution-Py3.ipynb |
2.87KB |
06. Loading the Dataset and Preprocessing.mp4 |
14.81MB |
06. Loading the Dataset and Preprocessing.vtt |
3.70KB |
06. MNIST Preprocess the Data - Shuffle and Batch.mp4 |
32.69MB |
06. MNIST Preprocess the Data - Shuffle and Batch.vtt |
9.57KB |
06. More Examples of Generative AI.mp4 |
30.54MB |
06. More Examples of Generative AI.vtt |
6.87KB |
06. Numerical Variables Exercise.html |
81B |
06. orders.csv |
37.73KB |
06. Outlining the Model with TensorFlow 2.mp4 |
26.96MB |
06. Outlining the Model with TensorFlow 2.vtt |
8.40KB |
06. Practical Example Linear Regression (Part 4).mp4 |
39.39MB |
06. Practical Example Linear Regression (Part 4).vtt |
11.86KB |
06. Prerequisites for Coding in the Jupyter Notebooks.mp4 |
18.96MB |
06. Prerequisites for Coding in the Jupyter Notebooks.vtt |
7.89KB |
06. products.csv |
1.78KB |
06. ratings.csv |
3.44KB |
06. real-estate-price-size.csv |
1.86KB |
06. real-estate-price-size.csv |
1.86KB |
06. Real Life Examples of Business Intelligence (BI).mp4 |
24.62MB |
06. Real Life Examples of Business Intelligence (BI).vtt |
2.26KB |
06. Selecting-the-number-of-clusters.ipynb |
4.53KB |
06. Selecting-the-number-of-clusters-with-comments.ipynb |
7.48KB |
06. Simple-Linear-Regression-Exercise.ipynb |
2.78KB |
06. Simple-Linear-Regression-Exercise-Solution.ipynb |
3.57KB |
06. Simple Linear Regression with sklearn - Exercise.html |
76B |
06. Simple-Linear-Regression-with-sklearn-Exercise.ipynb |
4.08KB |
06. Simple-Linear-Regression-with-sklearn-Exercise-Solution.ipynb |
26.61KB |
06. sklearn-Linear-Regression-Practical-Example-Part-4.ipynb |
397.23KB |
06. sklearn-Linear-Regression-Practical-Example-Part-4-with-comments.ipynb |
407.59KB |
06. Solving Combinations.mp4 |
23.64MB |
06. Solving Combinations.vtt |
6.03KB |
06. TensorFlow-Minimal-example-Part2.ipynb |
9.06KB |
06. Test for the Mean. Population Variance Known Exercise.html |
81B |
06. The Linear model with Multiple Inputs and Multiple Outputs.mp4 |
16.64MB |
06. The Linear model with Multiple Inputs and Multiple Outputs.vtt |
4.84KB |
06. Types of File Formats, supporting Tensors.mp4 |
8.90MB |
06. Types of File Formats, supporting Tensors.vtt |
3.44KB |
06. Using .unique() and .nunique().mp4 |
24.31MB |
06. Using .unique() and .nunique().vtt |
5.85KB |
06. Using a Statistical Approach towards the Solution to the Exercise.mp4 |
9.90MB |
06. Using a Statistical Approach towards the Solution to the Exercise.vtt |
2.99KB |
07. 1.02.Multiple-linear-regression.csv |
1.07KB |
07. 12.7.TensorFlow-MNIST-with-comments-Part-5.ipynb |
8.53KB |
07. 2.5.The-Histogram-lesson.xlsx |
18.63KB |
07. 3.11.Population-variance-unknown-t-score-exercise.xlsx |
10.62KB |
07. 3.11.Population-variance-unknown-t-score-exercise-solution.xlsx |
11.10KB |
07. 3.11.The-t-table.xlsx |
15.85KB |
07. 365-DataScience.png |
6.92MB |
07. 5.4.TensorFlow-Minimal-example-Part-2.ipynb |
6.17KB |
07. A2 No Endogeneity.mp4 |
9.24MB |
07. A2 No Endogeneity.vtt |
5.59KB |
07. A Breakdown of our Data Science Infographic.mp4 |
45.37MB |
07. A Breakdown of our Data Science Infographic.vtt |
5.09KB |
07. Adam (Adaptive Moment Estimation).mp4 |
7.14MB |
07. Adam (Adaptive Moment Estimation).vtt |
3.43KB |
07. Analyzing a client database with ChatGPT in Python – analyzing top products.mp4 |
15.17MB |
07. Analyzing a client database with ChatGPT in Python – analyzing top products.vtt |
5.15KB |
07. Backpropagation.mp4 |
20.34MB |
07. Backpropagation.vtt |
4.59KB |
07. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.mp4 |
17.69MB |
07. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.vtt |
7.97KB |
07. Built-in Functions in Python.mp4 |
10.19MB |
07. Built-in Functions in Python.vtt |
4.28KB |
07. Business Case Load the Preprocessed Data - Exercise.html |
79B |
07. Business Case Model Outline.mp4 |
42.51MB |
07. Business Case Model Outline.vtt |
7.16KB |
07. Confidence Intervals; Population Variance Unknown; T-score; Exercise.html |
81B |
07. Countries-exercise.csv |
8.27KB |
07. Creating a Summary Table with the Coefficients and Intercept.mp4 |
26.95MB |
07. Creating a Summary Table with the Coefficients and Intercept.vtt |
6.36KB |
07. Discrete Distributions The Poisson Distribution.mp4 |
23.92MB |
07. Discrete Distributions The Poisson Distribution.vtt |
7.18KB |
07. Dropping a Column from a DataFrame in Python.mp4 |
41.24MB |
07. Dropping a Column from a DataFrame in Python.vtt |
8.22KB |
07. Dummy Variables - Exercise.html |
713B |
07. Errors when Adding Matrices.mp4 |
5.77MB |
07. Errors when Adding Matrices.vtt |
2.70KB |
07. Errors-when-adding-scalars-vectors-and-matrices-in-Python.ipynb |
3.17KB |
07. Graphical Representation of Simple Neural Networks.mp4 |
7.78MB |
07. Graphical Representation of Simple Neural Networks.vtt |
2.69KB |
07. How to Choose the Number of Clusters - Exercise.html |
87B |
07. How-to-Choose-the-Number-of-Clusters-Exercise.ipynb |
5.55KB |
07. How-to-Choose-the-Number-of-Clusters-Solution.ipynb |
8.49KB |
07. Interpreting the Result and Extracting the Weights and Bias.mp4 |
25.91MB |
07. Interpreting the Result and Extracting the Weights and Bias.vtt |
6.74KB |
07. MNIST Batching and Early Stopping.mp4 |
9.48MB |
07. MNIST Batching and Early Stopping.vtt |
2.83KB |
07. MNIST Preprocess the Data - Shuffle and Batch - Exercise.html |
79B |
07. Multiple Linear Regression with sklearn.mp4 |
8.30MB |
07. Multiple Linear Regression with sklearn.vtt |
4.25KB |
07. Notable-Built-In-Functions-in-Python-Exercise-Py3.ipynb |
3.66KB |
07. Notable-Built-In-Functions-in-Python-Lecture-Py3.ipynb |
4.51KB |
07. Notable-Built-In-Functions-in-Python-Solution-Py3.ipynb |
5.52KB |
07. Online-p-value-calculator.pdf |
1.15MB |
07. Optimizing User Reviews Data Preprocessing & EDA.mp4 |
18.67MB |
07. Optimizing User Reviews Data Preprocessing & EDA.vtt |
5.97KB |
07. Poisson-Expected-Value-and-Variance.pdf |
145.99KB |
07. p-value.mp4 |
33.75MB |
07. p-value.vtt |
5.28KB |
07. sklearn-Multiple-Linear-Regression.ipynb |
7.79KB |
07. sklearn-Multiple-Linear-Regression-with-comments.ipynb |
8.65KB |
07. Standard error.mp4 |
13.51MB |
07. Standard error.vtt |
2.08KB |
07. Structure-Your-Code-with-Indentation-Exercise-Py3.ipynb |
956B |
07. Structure-Your-Code-with-Indentation-Lecture-Py3.ipynb |
958B |
07. Structure-Your-Code-with-Indentation-Solution-Py3.ipynb |
1.50KB |
07. Structuring with Indentation.mp4 |
2.79MB |
07. Structuring with Indentation.vtt |
2.30KB |
07. Symmetry-Explained.pdf |
85.04KB |
07. Symmetry of Combinations.mp4 |
13.74MB |
07. Symmetry of Combinations.vtt |
4.49KB |
07. Techniques for Working with Traditional Methods.mp4 |
76.01MB |
07. Techniques for Working with Traditional Methods.vtt |
11.49KB |
07. TensorFlow-Audiobooks-Machine-Learning-Part1-with-comments.ipynb |
4.61KB |
07. TensorFlow-Audiobooks-Outlining-the-model.ipynb |
9.36KB |
07. TensorFlow-Audiobooks-Outlining-the-model-with-comments.ipynb |
10.34KB |
07. TensorFlow-Minimal-example-Part3.ipynb |
76.52KB |
07. TensorFlow-MNIST-Part3-with-comments.ipynb |
8.61KB |
07. The Conditional Probability Formula.mp4 |
20.07MB |
07. The Conditional Probability Formula.vtt |
5.90KB |
07. The Histogram.mp4 |
9.58MB |
07. The Histogram.vtt |
3.37KB |
07. Understanding Logistic Regression Tables.mp4 |
14.59MB |
07. Understanding Logistic Regression Tables.vtt |
5.59KB |
07. Using .sort_values().mp4 |
15.23MB |
07. Using .sort_values().vtt |
5.58KB |
07. Using Seaborn for Graphs.mp4 |
7.38MB |
07. Using Seaborn for Graphs.vtt |
1.56KB |
08. 1.02.Multiple-linear-regression.csv |
1.07KB |
08. 1.04.Real-life-example.csv |
219.83KB |
08. 12.8.TensorFlow-MNIST-with-comments-Part-6.ipynb |
11.50KB |
08. 2.5.The-Histogram-exercise.xlsx |
15.50KB |
08. 2.5.The-Histogram-exercise-solution.xlsx |
17.10KB |
08. 4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx |
14.54KB |
08. 5.5.TensorFlow-Minimal-example-Part-3.ipynb |
8.65KB |
08. A3 Normality and Homoscedasticity.mp4 |
27.36MB |
08. A3 Normality and Homoscedasticity.vtt |
7.05KB |
08. Analyzing a client database with ChatGPT in Python – analyzing top clients, RFM.mp4 |
27.19MB |
08. Analyzing a client database with ChatGPT in Python – analyzing top clients, RFM.vtt |
5.84KB |
08. Backpropagation Picture.mp4 |
8.06MB |
08. Backpropagation Picture.vtt |
3.80KB |
08. Bank-data.csv |
19.55KB |
08. Basic NN Example with TF Loss Function and Gradient Descent.mp4 |
13.61MB |
08. Basic NN Example with TF Loss Function and Gradient Descent.vtt |
4.85KB |
08. Business Case Learning and Interpreting the Result.mp4 |
29.40MB |
08. Business Case Learning and Interpreting the Result.vtt |
6.34KB |
08. Business Case Optimization.mp4 |
26.94MB |
08. Business Case Optimization.vtt |
6.92KB |
08. Calculating the Adjusted R-Squared in sklearn.mp4 |
16.90MB |
08. Calculating the Adjusted R-Squared in sklearn.vtt |
6.65KB |
08. Characteristics of Continuous Distributions.mp4 |
21.25MB |
08. Characteristics of Continuous Distributions.vtt |
9.18KB |
08. Customizing a TensorFlow 2 Model.mp4 |
16.76MB |
08. Customizing a TensorFlow 2 Model.vtt |
4.29KB |
08. Estimators and Estimates.mp4 |
27.69MB |
08. Estimators and Estimates.vtt |
3.99KB |
08. EXERCISE - Dropping a Column from a DataFrame in Python.html |
870B |
08. Furniture-store-data-analysis.ipynb |
52.39KB |
08. Histogram Exercise.html |
81B |
08. How to Interpret the Regression Table.mp4 |
28.73MB |
08. How to Interpret the Regression Table.vtt |
6.34KB |
08. Interpreting the Coefficients for Our Problem.mp4 |
41.14MB |
08. Interpreting the Coefficients for Our Problem.vtt |
8.53KB |
08. Introduction to pandas DataFrames - Part I.mp4 |
12.46MB |
08. Introduction to pandas DataFrames - Part I.vtt |
7.34KB |
08. Margin of Error.mp4 |
23.10MB |
08. Margin of Error.vtt |
6.44KB |
08. MNIST Learning.mp4 |
31.83MB |
08. MNIST Learning.vtt |
10.47KB |
08. MNIST Outline the Model.mp4 |
22.07MB |
08. MNIST Outline the Model.vtt |
7.15KB |
08. Practical Example Linear Regression (Part 5).mp4 |
50.42MB |
08. Practical Example Linear Regression (Part 5).vtt |
11.07KB |
08. Pros and Cons of K-Means Clustering.mp4 |
11.12MB |
08. Pros and Cons of K-Means Clustering.vtt |
4.59KB |
08. Real Life Examples of Traditional Methods.mp4 |
36.74MB |
08. Real Life Examples of Traditional Methods.vtt |
5.37KB |
08. Reg Ex for Analyzing Text Review Data.mp4 |
16.18MB |
08. Reg Ex for Analyzing Text Review Data.vtt |
5.09KB |
08. sklearn-Linear-Regression-Practical-Example-Part-5.ipynb |
698.36KB |
08. sklearn-Linear-Regression-Practical-Example-Part-5-with-comments.ipynb |
711.05KB |
08. sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared.ipynb |
9.11KB |
08. sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-with-comments.ipynb |
10.41KB |
08. Solving Combinations with Separate Sample Spaces.mp4 |
20.30MB |
08. Solving Combinations with Separate Sample Spaces.vtt |
4.07KB |
08. Solving-Integrals.pdf |
343.85KB |
08. Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf |
289.12KB |
08. TensorFlow-Audiobooks-Machine-Learning-Part2-with-comments.ipynb |
19.69KB |
08. TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb |
10.64KB |
08. TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb |
12.73KB |
08. TensorFlow-Minimal-example-complete.ipynb |
76.85KB |
08. TensorFlow-Minimal-example-complete-with-comments.ipynb |
82.29KB |
08. TensorFlow-MNIST-Part4-with-comments.ipynb |
10.49KB |
08. Test for the Mean. Population Variance Unknown.mp4 |
19.70MB |
08. Test for the Mean. Population Variance Unknown.vtt |
5.96KB |
08. The Law of Total Probability.mp4 |
14.21MB |
08. The Law of Total Probability.vtt |
3.91KB |
08. Tranpose-of-a-matrix.ipynb |
2.89KB |
08. Transpose of a Matrix.mp4 |
14.21MB |
08. Transpose of a Matrix.vtt |
5.55KB |
08. Understanding Logistic Regression Tables - Exercise.html |
87B |
08. Understanding-Logistic-Regression-Tables-Exercise.ipynb |
3.16KB |
08. Understanding-Logistic-Regression-Tables-Solution.ipynb |
4.79KB |
08. What is the Objective Function.mp4 |
6.18MB |
08. What is the Objective Function.vtt |
2.26KB |
09. 1.02.Multiple-linear-regression.csv |
1.07KB |
09. 12.9.TensorFlow-MNIST-with-comments.ipynb |
13.03KB |
09. 2.6.Cross-table-and-scatter-plot.xlsx |
26.12KB |
09. 3.13.Confidence-intervals.Two-means.Dependent-samples-lesson.xlsx |
10.47KB |
09. 4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx |
11.34KB |
09. 4.6.Test-for-the-mean.Population-variance-unknown-exercise-solution.xlsx |
12.63KB |
09. 5.6.TensorFlow-Minimal-example-complete.ipynb |
12.15KB |
09. A4 No Autocorrelation.mp4 |
7.90MB |
09. A4 No Autocorrelation.vtt |
5.00KB |
09. Backpropagation - A Peek into the Mathematics of Optimization.html |
543B |
09. Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf |
182.38KB |
09. Basic NN Example with TF Model Output.mp4 |
17.07MB |
09. Basic NN Example with TF Model Output.vtt |
7.85KB |
09. Basic NN with TensorFlow Exercises.html |
1.29KB |
09. Business Case Interpretation.mp4 |
18.63MB |
09. Business Case Interpretation.vtt |
3.09KB |
09. Business Case Setting an Early Stopping Mechanism.mp4 |
43.82MB |
09. Business Case Setting an Early Stopping Mechanism.vtt |
8.12KB |
09. Calculating the Adjusted R-Squared in sklearn - Exercise.html |
76B |
09. Combinatorics in Real-Life The Lottery.mp4 |
16.38MB |
09. Combinatorics in Real-Life The Lottery.vtt |
4.22KB |
09. Common Objective Functions L2-norm Loss.mp4 |
5.47MB |
09. Common Objective Functions L2-norm Loss.vtt |
2.94KB |
09. Confidence intervals. Two means. Dependent samples.mp4 |
44.98MB |
09. Confidence intervals. Two means. Dependent samples.vtt |
8.46KB |
09. Continuous Distributions The Normal Distribution.mp4 |
20.01MB |
09. Continuous Distributions The Normal Distribution.vtt |
5.09KB |
09. Cross Tables and Scatter Plots.mp4 |
19.70MB |
09. Cross Tables and Scatter Plots.vtt |
6.92KB |
09. Decomposition of Variability.mp4 |
8.79MB |
09. Decomposition of Variability.vtt |
4.47KB |
09. Dot-product.ipynb |
2.13KB |
09. Dot Product.mp4 |
12.84MB |
09. Dot Product.vtt |
4.34KB |
09. Exploratory data analysis (EDA) with ChatGPT - histogram and scatter plot.mp4 |
21.59MB |
09. Exploratory data analysis (EDA) with ChatGPT - histogram and scatter plot.vtt |
7.43KB |
09. Introduction to pandas DataFrames - Part II.mp4 |
17.83MB |
09. Introduction to pandas DataFrames - Part II.vtt |
8.00KB |
09. Linear Regression - Exercise.html |
503B |
09. Machine Learning (ML) Techniques.mp4 |
49.42MB |
09. Machine Learning (ML) Techniques.vtt |
9.31KB |
09. MNIST Results and Testing.mp4 |
38.11MB |
09. MNIST Results and Testing.vtt |
8.21KB |
09. MNIST Select the Loss and the Optimizer.mp4 |
10.65MB |
09. MNIST Select the Loss and the Optimizer.vtt |
3.03KB |
09. Normal-Distribution-Exp-and-Var.pdf |
144.08KB |
09. sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise.ipynb |
9.83KB |
09. sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise-Solution.ipynb |
10.31KB |
09. SOLUTION - Dropping a Column from a DataFrame in Python.html |
114B |
09. Standardizing only the Numerical Variables (Creating a Custom Scaler).mp4 |
16.86MB |
09. Standardizing only the Numerical Variables (Creating a Custom Scaler).vtt |
5.24KB |
09. TensorFlow-Audiobooks-Machine-Learning-Part3-with-comments.ipynb |
10.06KB |
09. TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb |
10.64KB |
09. TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb |
12.73KB |
09. TensorFlow-Minimal-example-All-exercises.ipynb |
83.62KB |
09. TensorFlow-Minimal-example-Exercise-1-Solution.ipynb |
27.96KB |
09. TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb |
83.68KB |
09. TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb |
77.52KB |
09. TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb |
84.44KB |
09. TensorFlow-MNIST-Part5-with-comments.ipynb |
10.99KB |
09. Test for the Mean. Population Variance Unknown Exercise.html |
81B |
09. The Additive Rule.mp4 |
11.09MB |
09. The Additive Rule.vtt |
2.66KB |
09. To Standardize or not to Standardize.mp4 |
10.92MB |
09. To Standardize or not to Standardize.vtt |
6.26KB |
09. Understanding Differences between Multinomial and Bernouilli Naive Bayes.mp4 |
13.86MB |
09. Understanding Differences between Multinomial and Bernouilli Naive Bayes.vtt |
5.38KB |
09. What do the Odds Actually Mean.mp4 |
11.39MB |
09. What do the Odds Actually Mean.vtt |
4.41KB |
10. 1.02.Multiple-linear-regression.csv |
1.07KB |
10. 2.02.Binary-predictors.csv |
2.56KB |
10. 2.6.Cross-table-and-scatter-plot-exercise.xlsx |
16.28KB |
10. 2.6.Cross-table-and-scatter-plot-exercise-solution.xlsx |
40.44KB |
10. 3.13.Confidence-intervals.Two-means.Dependent-samples-exercise.xlsx |
13.74KB |
10. 3.13.Confidence-intervals.Two-means.Dependent-samples-exercise-solution.xlsx |
14.24KB |
10. 4.7.Test-for-the-mean.Dependent-samples-lesson.xlsx |
9.79KB |
10. A5 No Multicollinearity.mp4 |
7.60MB |
10. A5 No Multicollinearity.vtt |
4.62KB |
10. Analyzing the Reasons for Absence.mp4 |
27.63MB |
10. Analyzing the Reasons for Absence.vtt |
6.02KB |
10. A Recap of Combinatorics.mp4 |
12.10MB |
10. A Recap of Combinatorics.vtt |
3.79KB |
10. Basic NN Example with TF Exercises.html |
1.60KB |
10. Binary-predictors.ipynb |
2.41KB |
10. Binary Predictors in a Logistic Regression.mp4 |
24.86MB |
10. Binary Predictors in a Logistic Regression.vtt |
5.27KB |
10. Business Case Testing the Model.mp4 |
4.40MB |
10. Business Case Testing the Model.vtt |
2.70KB |
10. Common Objective Functions Cross-Entropy Loss.mp4 |
9.84MB |
10. Common Objective Functions Cross-Entropy Loss.vtt |
5.38KB |
10. Confidence intervals. Two means. Dependent samples Exercise.html |
81B |
10. Continuous Distributions The Standard Normal Distribution.mp4 |
21.11MB |
10. Continuous Distributions The Standard Normal Distribution.vtt |
5.73KB |
10. Cross Tables and Scatter Plots Exercise.html |
81B |
10. Dot Product of Matrices.mp4 |
34.31MB |
10. Dot Product of Matrices.vtt |
9.09KB |
10. Dot-product-Part-2.ipynb |
3.60KB |
10. Exploratory data analysis (EDA) with ChatGPT - correlation matrix, outlier detec.mp4 |
33.71MB |
10. Exploratory data analysis (EDA) with ChatGPT - correlation matrix, outlier detec.vtt |
7.57KB |
10. Feature Selection (F-regression).mp4 |
20.51MB |
10. Feature Selection (F-regression).vtt |
6.93KB |
10. Interpreting the Coefficients of the Logistic Regression.mp4 |
15.21MB |
10. Interpreting the Coefficients of the Logistic Regression.vtt |
7.49KB |
10. Machine Learning with Naïve Bayes (First Attempt).mp4 |
28.11MB |
10. Machine Learning with Naïve Bayes (First Attempt).vtt |
8.42KB |
10. MNIST Exercises.html |
2.16KB |
10. MNIST Learning.mp4 |
30.99MB |
10. MNIST Learning.vtt |
7.95KB |
10. pandas DataFrames - Common Attributes.mp4 |
25.65MB |
10. pandas DataFrames - Common Attributes.vtt |
6.56KB |
10. properties.csv |
2.66KB |
10. Properties-analysis.ipynb |
286.54KB |
10. Relationship between Clustering and Regression.mp4 |
3.51MB |
10. Relationship between Clustering and Regression.vtt |
2.29KB |
10. Setting an Early Stopping Mechanism - Exercise.html |
192B |
10. sklearn-Feature-Selection-with-F-regression.ipynb |
10.44KB |
10. sklearn-Feature-Selection-with-F-regression-with-comments.ipynb |
12.99KB |
10. TensorFlow-Minimal-Example-All-Exercises.ipynb |
13.97KB |
10. TensorFlow-Minimal-Example-Exercise-1-Solution.ipynb |
23.63KB |
10. TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb |
25.54KB |
10. TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb |
25.51KB |
10. TensorFlow-Minimal-Example-Exercise-2-3-Solution.ipynb |
49.96KB |
10. TensorFlow-Minimal-Example-Exercise-2-4-Solution.ipynb |
21.75KB |
10. TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb |
26.71KB |
10. TensorFlow-Minimal-Example-Exercise-4-Solution.ipynb |
26.98KB |
10. TensorFlow-MNIST-Exercises-All.ipynb |
15.47KB |
10. TensorFlow-MNIST-Part6-with-comments.ipynb |
12.54KB |
10. Test for the Mean. Dependent Samples.mp4 |
32.76MB |
10. Test for the Mean. Dependent Samples.vtt |
6.78KB |
10. The Multiplication Law.mp4 |
20.19MB |
10. The Multiplication Law.vtt |
4.71KB |
10. Types of Machine Learning.mp4 |
69.45MB |
10. Types of Machine Learning.vtt |
10.95KB |
10. What is the OLS.mp4 |
22.46MB |
10. What is the OLS.vtt |
3.82KB |
11. 0.TensorFlow-MNIST-take-note-of-time-Solution.ipynb |
14.00KB |
11. 1.02.Multiple-linear-regression.csv |
1.07KB |
11. 1.03.Dummies.csv |
1.19KB |
11. 1.TensorFlow-MNIST-Width-Solution.ipynb |
14.84KB |
11. 1.TensorFlow-MNIST-Width-Solution.ipynb |
14.01KB |
11. 2.7.Mean-median-and-mode-lesson.xlsx |
10.49KB |
11. 2.TensorFlow-MNIST-Depth-Solution.ipynb |
15.31KB |
11. 2.TensorFlow-MNIST-Depth-Solution.ipynb |
14.87KB |
11. 3.12.Example.csv |
283B |
11. 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-lesson.xlsx |
9.83KB |
11. 3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb |
15.30KB |
11. 3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb |
16.81KB |
11. 4.7.Test-for-the-mean.Dependent-samples-exercise.xlsx |
12.80KB |
11. 4.7.Test-for-the-mean.Dependent-samples-exercise-solution.xlsx |
14.40KB |
11. 4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb |
15.11KB |
11. 4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb |
14.35KB |
11. 5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb |
14.74KB |
11. 5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb |
13.93KB |
11. 6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb |
15.12KB |
11. 6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb |
14.26KB |
11. 7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb |
15.18KB |
11. 7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb |
14.16KB |
11. 8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb |
20.58KB |
11. 8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb |
14.07KB |
11. 9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb |
15.80KB |
11. 9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb |
15.21KB |
11. Additional-Exercises-Combinatorics.pdf |
106.58KB |
11. Additional-Exercises-Combinatorics-Solutions.pdf |
245.67KB |
11. A Note on Calculation of P-values with sklearn.html |
372B |
11. A Practical Example of Combinatorics.mp4 |
80.69MB |
11. A Practical Example of Combinatorics.vtt |
15.17KB |
11. Assignment 1.html |
1.62KB |
11. Audiobooks-data.csv |
710.77KB |
11. Backward Elimination or How to Simplify Your Model.mp4 |
31.82MB |
11. Backward Elimination or How to Simplify Your Model.vtt |
5.37KB |
11. Bank-data.csv |
19.55KB |
11. Bayes' Law.mp4 |
21.35MB |
11. Bayes' Law.vtt |
7.70KB |
11. Binary Predictors in a Logistic Regression - Exercise.html |
87B |
11. Binary-Predictors-in-a-Logistic-Regression-Exercise.ipynb |
2.54KB |
11. Binary-Predictors-in-a-Logistic-Regression-Solution.ipynb |
4.51KB |
11. Business Case A Comment on the Homework.mp4 |
20.58MB |
11. Business Case A Comment on the Homework.vtt |
5.38KB |
11. Business Case Testing the Model.mp4 |
8.19MB |
11. Business Case Testing the Model.vtt |
2.14KB |
11. Confidence intervals. Two means. Independent Samples (Part 1).mp4 |
11.99MB |
11. Confidence intervals. Two means. Independent Samples (Part 1).vtt |
6.28KB |
11. Continuous Distributions The Students' T Distribution.mp4 |
9.24MB |
11. Continuous Distributions The Students' T Distribution.vtt |
3.22KB |
11. Data Selection in pandas DataFrames.mp4 |
37.28MB |
11. Data Selection in pandas DataFrames.vtt |
10.51KB |
11. Dealing with Categorical Data - Dummy Variables.mp4 |
22.65MB |
11. Dealing with Categorical Data - Dummy Variables.vtt |
9.55KB |
11. Dummy-Variables.ipynb |
4.62KB |
11. Dummy-variables-with-comments.ipynb |
7.09KB |
11. Evolution and Latest Trends of Machine Learning (ML).mp4 |
27.32MB |
11. Evolution and Latest Trends of Machine Learning (ML).vtt |
7.76KB |
11. GD-function-example.xlsx |
42.33KB |
11. Machine Learning with Naïve Bayes – converting the problem to a binary one.mp4 |
18.89MB |
11. Machine Learning with Naïve Bayes – converting the problem to a binary one.vtt |
6.71KB |
11. Market-segmentation-example.ipynb |
3.80KB |
11. Market-segmentation-example-with-comments.ipynb |
5.90KB |
11. Market Segmentation with Cluster Analysis (Part 1).mp4 |
28.04MB |
11. Market Segmentation with Cluster Analysis (Part 1).vtt |
7.53KB |
11. Mean, median and mode.mp4 |
24.50MB |
11. Mean, median and mode.vtt |
5.98KB |
11. MNIST - Exercises.html |
1.98KB |
11. MNIST Solutions.html |
2.22KB |
11. Obtaining Dummies from a Single Feature.mp4 |
69.75MB |
11. Obtaining Dummies from a Single Feature.vtt |
10.58KB |
11. Optimization Algorithm 1-Parameter Gradient Descent.mp4 |
23.57MB |
11. Optimization Algorithm 1-Parameter Gradient Descent.vtt |
8.80KB |
11. R-Squared.mp4 |
11.20MB |
11. R-Squared.vtt |
6.80KB |
11. sklearn-How-to-properly-include-p-values.ipynb |
12.71KB |
11. TensorFlow-Audiobooks-Machine-learning-Homework.ipynb |
14.40KB |
11. TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb |
11.95KB |
11. TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb |
11.19KB |
11. TensorFlow-MNIST-All-Exercises.ipynb |
16.65KB |
11. TensorFlow-MNIST-around-98-percent-accuracy.ipynb |
15.02KB |
11. TensorFlow-MNIST-around-98-percent-accuracy.ipynb |
17.66KB |
11. Test for the Mean. Dependent Samples Exercise.html |
81B |
11. Why is Linear Algebra Useful.mp4 |
88.47MB |
11. Why is Linear Algebra Useful.vtt |
11.53KB |
12. 1.02.Multiple-linear-regression.csv |
1.07KB |
12. 2.7.Mean-median-and-mode-exercise.xlsx |
10.87KB |
12. 2.7.Mean-median-and-mode-exercise-solution.xlsx |
11.35KB |
12. 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise.xlsx |
9.83KB |
12. 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise-solution.xlsx |
10.12KB |
12. 365-User-Reviews-Naive-Bayes-Sentiment-Analysis.ipynb |
1.71MB |
12. 4.8.Test-for-the-mean.Independent-samples-Part-1-lesson.xlsx |
9.63KB |
12. Accuracy.ipynb |
3.63KB |
12. Accuracy-with-comments.ipynb |
11.67KB |
12. A Practical Example of Bayesian Inference.mp4 |
139.24MB |
12. A Practical Example of Bayesian Inference.vtt |
20.11KB |
12. Audiobooks-data.csv |
710.77KB |
12. Bayesian-Homework.pdf |
27.26KB |
12. Bayesian-Homework-Solutions.pdf |
30.35KB |
12. Business Case Final Exercise.html |
433B |
12. Business Case Final Exercise.html |
443B |
12. Calculating the Accuracy of the Model.mp4 |
20.26MB |
12. Calculating the Accuracy of the Model.vtt |
4.29KB |
12. CDS-2017-2018-Hamilton.pdf |
845.31KB |
12. Confidence intervals. Two means. Independent Samples (Part 1). Exercise.html |
81B |
12. Continuous Distributions The Chi-Squared Distribution.mp4 |
11.16MB |
12. Continuous Distributions The Chi-Squared Distribution.vtt |
2.98KB |
12. Creating a Summary Table with P-values.mp4 |
6.45MB |
12. Creating a Summary Table with P-values.vtt |
3.05KB |
12. Dealing with Categorical Data - Dummy Variables.html |
76B |
12. EXERCISE - Obtaining Dummies from a Single Feature.html |
129B |
12. Hypothesis testing with ChatGPT.mp4 |
14.37MB |
12. Hypothesis testing with ChatGPT.vtt |
5.65KB |
12. Market-segmentation-example-Part2.ipynb |
4.68KB |
12. Market-segmentation-example-Part2-with-comments.ipynb |
6.81KB |
12. Market Segmentation with Cluster Analysis (Part 2).mp4 |
34.08MB |
12. Market Segmentation with Cluster Analysis (Part 2).vtt |
9.13KB |
12. Mean, Median and Mode Exercise.html |
81B |
12. MNIST Testing the Model.mp4 |
22.61MB |
12. MNIST Testing the Model.vtt |
5.96KB |
12. Multiple-Linear-Regression-with-Dummies-Exercise.ipynb |
3.01KB |
12. Multiple-Linear-Regression-with-Dummies-Exercise-Solution.ipynb |
18.00KB |
12. Optimization Algorithm n-Parameter Gradient Descent.mp4 |
16.83MB |
12. Optimization Algorithm n-Parameter Gradient Descent.vtt |
7.79KB |
12. pandas DataFrames - Indexing with .iloc[].mp4 |
32.21MB |
12. pandas DataFrames - Indexing with .iloc[].vtt |
8.34KB |
12. real-estate-price-size-year-view.csv |
3.39KB |
12. Real Life Examples of Machine Learning (ML).mp4 |
27.74MB |
12. Real Life Examples of Machine Learning (ML).vtt |
3.03KB |
12. sklearn-Multiple-Linear-Regression-Summary-Table.ipynb |
13.71KB |
12. sklearn-Multiple-Linear-Regression-Summary-Table-with-comments.ipynb |
16.63KB |
12. students.csv |
2.08KB |
12. Students-Hypothesis-Testing.ipynb |
5.60KB |
12. TensorFlow-Audiobooks-Machine-learning-Homework.ipynb |
14.40KB |
12. TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb |
11.95KB |
12. TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb |
11.19KB |
12. TensorFlow-MNIST-complete.ipynb |
6.78KB |
12. TensorFlow-MNIST-complete-with-comments.ipynb |
14.51KB |
12. Test for the mean. Independent Samples (Part 1).mp4 |
15.42MB |
12. Test for the mean. Independent Samples (Part 1).vtt |
5.47KB |
12. Testing the Model on New Data.mp4 |
20.83MB |
12. Testing the Model on New Data.vtt |
6.93KB |
12. Testing the Model We Created.mp4 |
31.60MB |
12. Testing the Model We Created.vtt |
6.53KB |
12. user-courses-review-test-set.csv |
19.63KB |
13. 2.8.Skewness-lesson.xlsx |
34.63KB |
13. 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-lesson.xlsx |
9.52KB |
13. 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise.xlsx |
10.77KB |
13. 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise-solution.xlsx |
11.25KB |
13. Bank-data.csv |
19.55KB |
13. Calculating the Accuracy of the Model.html |
87B |
13. Calculating-the-Accuracy-of-the-Model-Exercise.ipynb |
5.39KB |
13. Calculating-the-Accuracy-of-the-Model-Solution.ipynb |
81.21KB |
13. Confidence intervals. Two means. Independent Samples (Part 2).mp4 |
14.62MB |
13. Confidence intervals. Two means. Independent Samples (Part 2).vtt |
4.69KB |
13. Continuous Distributions The Exponential Distribution.mp4 |
15.99MB |
13. Continuous Distributions The Exponential Distribution.vtt |
4.47KB |
13. How is Clustering Useful.mp4 |
37.43MB |
13. How is Clustering Useful.vtt |
6.78KB |
13. Lending-company.csv |
112.43KB |
13. Location.csv |
13.49KB |
13. Making-predictions.ipynb |
5.77KB |
13. Making-predictions-with-comments.ipynb |
9.41KB |
13. Making Predictions with the Linear Regression.mp4 |
16.34MB |
13. Making Predictions with the Linear Regression.vtt |
4.44KB |
13. Marvels comic book database Intro to Regular Expressions (RegEx).mp4 |
14.98MB |
13. Marvels comic book database Intro to Regular Expressions (RegEx).vtt |
2.72KB |
13. Multiple Linear Regression - Exercise.html |
76B |
13. pandas DataFrames - Indexing with .loc[].mp4 |
20.69MB |
13. pandas DataFrames - Indexing with .loc[].vtt |
5.56KB |
13. pandas-Fundamentals-Exercises.ipynb |
30.96KB |
13. pandas-Fundamentals-Lectures.ipynb |
21.31KB |
13. pandas-Fundamentals-Solutions.ipynb |
118.35KB |
13. real-estate-price-size-year.csv |
2.35KB |
13. Region.csv |
10.22KB |
13. Sales-products.csv |
152.28KB |
13. Saving the Model and Preparing it for Deployment.mp4 |
25.52MB |
13. Saving the Model and Preparing it for Deployment.vtt |
5.76KB |
13. Skewness.mp4 |
13.32MB |
13. Skewness.vtt |
3.73KB |
13. sklearn-Multiple-Linear-Regression-Exercise.ipynb |
5.67KB |
13. sklearn-Multiple-Linear-Regression-Exercise-Solution.ipynb |
15.44KB |
13. SOLUTION - Obtaining Dummies from a Single Feature.html |
117B |
13. Test for the mean. Independent Samples (Part 1). Exercise.html |
81B |
14. 1.02.Multiple-linear-regression.csv |
1.07KB |
14. 2.8.Skewness-exercise.xlsx |
9.49KB |
14. 2.8.Skewness-exercise-solution.xlsx |
19.78KB |
14. 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise.xlsx |
9.17KB |
14. 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise-solution.xlsx |
9.79KB |
14. 4.9.Test-for-the-mean.Independent-samples-Part-2-lesson.xlsx |
9.31KB |
14. ARTICLE - A Note on 'pickling'.html |
2.14KB |
14. Confidence intervals. Two means. Independent Samples (Part 2). Exercise.html |
81B |
14. Continuous Distributions The Logistic Distribution.mp4 |
16.18MB |
14. Continuous Distributions The Logistic Distribution.vtt |
5.41KB |
14. Decoding comic book data Python Regular Expressions and ChatGPT.mp4 |
33.05MB |
14. Decoding comic book data Python Regular Expressions and ChatGPT.vtt |
6.45KB |
14. Dropping a Dummy Variable from the Data Set.html |
2.34KB |
14. EXERCISE Species Segmentation with Cluster Analysis (Part 1).html |
87B |
14. Feature Scaling (Standardization).mp4 |
20.37MB |
14. Feature Scaling (Standardization).vtt |
8.78KB |
14. iris-dataset.csv |
2.40KB |
14. Marvel-Comics-Reg-Ex.ipynb |
29.49KB |
14. Skewness Exercise.html |
81B |
14. SKLEAR-1.IPY |
12.87KB |
14. sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-1.ipynb |
11.73KB |
14. Species-Segmentation-with-Cluster-Analysis-Part-1-Exercise.ipynb |
4.46KB |
14. Species-Segmentation-with-Cluster-Analysis-Part-1-Solution.ipynb |
7.35KB |
14. Test for the mean. Independent Samples (Part 2).mp4 |
24.45MB |
14. Test for the mean. Independent Samples (Part 2).vtt |
5.39KB |
14. Underfitting and Overfitting.mp4 |
7.49MB |
14. Underfitting and Overfitting.vtt |
5.16KB |
15. 1.02.Multiple-linear-regression.csv |
1.07KB |
15. 2.03.Test-dataset.csv |
322B |
15. 2.9.Variance-lesson.xlsx |
10.08KB |
15. 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2.xlsx |
10.54KB |
15. 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2-solution.xlsx |
11.39KB |
15. A Practical Example of Probability Distributions.mp4 |
138.31MB |
15. A Practical Example of Probability Distributions.vtt |
21.13KB |
15. Assignment 2.html |
1.56KB |
15. Confidence intervals. Two means. Independent Samples (Part 3).mp4 |
6.88MB |
15. Confidence intervals. Two means. Independent Samples (Part 3).vtt |
2.03KB |
15. Customers-Membership.xlsx |
9.69KB |
15. Customers-Membership-post.xlsx |
15.62KB |
15. Daily-Views.xlsx |
9.53KB |
15. Daily-Views-post.xlsx |
20.21KB |
15. EXERCISE - Saving the Model (and Scaler).html |
284B |
15. EXERCISE Species Segmentation with Cluster Analysis (Part 2).html |
87B |
15. Feature Selection through Standardization of Weights.mp4 |
24.46MB |
15. Feature Selection through Standardization of Weights.vtt |
7.62KB |
15. FIFA19.csv |
8.64MB |
15. FIFA19-post.csv |
8.64MB |
15. iris-dataset.csv |
2.40KB |
15. iris-with-answers.csv |
3.63KB |
15. More on Dummy Variables A Statistical Perspective.mp4 |
5.82MB |
15. More on Dummy Variables A Statistical Perspective.vtt |
1.71KB |
15. SKLEAR-1.IPY |
16.79KB |
15. sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-2.ipynb |
14.89KB |
15. Species-Segmentation-with-Cluster-Analysis-Part-2-Exercise.ipynb |
10.74KB |
15. Species-Segmentation-with-Cluster-Analysis-Part-2-Solution.ipynb |
15.30KB |
15. Test for the mean. Independent Samples (Part 2). Exercise.html |
81B |
15. Testing-the-model.ipynb |
5.77KB |
15. Testing the Model.mp4 |
21.59MB |
15. Testing the Model.vtt |
6.54KB |
15. Testing-the-model-with-comments.ipynb |
7.56KB |
15. Variance.mp4 |
23.55MB |
15. Variance.vtt |
8.19KB |
16. 1.02.Multiple-linear-regression.csv |
1.07KB |
16. 2.9.Variance-exercise.xlsx |
10.83KB |
16. 2.9.Variance-exercise-solution.xlsx |
11.05KB |
16. Algorithm recommendation Movie Database Analysis with ChatGPT.mp4 |
17.25MB |
16. Algorithm recommendation Movie Database Analysis with ChatGPT.vtt |
4.36KB |
16. Bank-data.csv |
19.55KB |
16. Bank-data-testing.csv |
8.30KB |
16. Classifying the Various Reasons for Absence.mp4 |
51.32MB |
16. Classifying the Various Reasons for Absence.vtt |
10.52KB |
16. Predicting with the Standardized Coefficients.mp4 |
20.44MB |
16. Predicting with the Standardized Coefficients.vtt |
5.55KB |
16. Preparing the Deployment of the Model through a Module.mp4 |
28.56MB |
16. Preparing the Deployment of the Model through a Module.vtt |
5.90KB |
16. ratings-small.csv |
2.33MB |
16. sklearn-Making-Predictions-with-the-Standardized-Coefficients.ipynb |
29.75KB |
16. sklearn-Making-Predictions-with-the-Standardized-Coefficients-with-comments.ipynb |
22.03KB |
16. Testing the Model - Exercise.html |
87B |
16. Testing-the-Model-Exercise.ipynb |
6.79KB |
16. Testing-the-Model-Solution.ipynb |
111.10KB |
16. Variance Exercise.html |
522B |
17. 2.10.Standard-deviation-and-coefficient-of-variation-lesson.xlsx |
10.97KB |
17. Algorithm recommendation recommendation engine for movies with ChatGPT.mp4 |
17.85MB |
17. Algorithm recommendation recommendation engine for movies with ChatGPT.vtt |
6.36KB |
17. Feature Scaling (Standardization) - Exercise.html |
76B |
17. Movies-Data-Base-Recommendation-Engine.ipynb |
20.39KB |
17. real-estate-price-size-year.csv |
2.35KB |
17. sklearn-Feature-Scaling-Exercise.ipynb |
6.07KB |
17. sklearn-Feature-Scaling-Exercise-Solution.ipynb |
16.28KB |
17. Standard Deviation and Coefficient of Variation.mp4 |
20.12MB |
17. Standard Deviation and Coefficient of Variation.vtt |
6.35KB |
17. Using .concat() in Python.mp4 |
27.34MB |
17. Using .concat() in Python.vtt |
5.17KB |
18. 2.10.Standard-deviation-and-coefficient-of-variation-exercise.xlsx |
11.61KB |
18. 2.10.Standard-deviation-and-coefficient-of-variation-exercise-solution.xlsx |
12.60KB |
18. Ethical principles in data and AI utilization.mp4 |
14.73MB |
18. Ethical principles in data and AI utilization.vtt |
4.36KB |
18. EXERCISE - Using .concat() in Python.html |
189B |
18. Standard Deviation and Coefficient of Variation Exercise.html |
81B |
18. Underfitting and Overfitting.mp4 |
5.83MB |
18. Underfitting and Overfitting.vtt |
3.75KB |
19. 2.11.Covariance-lesson.xlsx |
24.92KB |
19. Covariance.mp4 |
18.37MB |
19. Covariance.vtt |
5.11KB |
19. friendships.csv |
6.00KB |
19. interactions.csv |
73.25KB |
19. posts.csv |
30.79KB |
19. sklearn-Train-Test-Split.ipynb |
7.23KB |
19. sklearn-Train-Test-Split-with-comments.ipynb |
9.05KB |
19. SOLUTION - Using .concat() in Python.html |
143B |
19. Train - Test Split Explained.mp4 |
35.57MB |
19. Train - Test Split Explained.vtt |
9.71KB |
19. users.csv |
3.49KB |
19. Using ChatGPT for ethical considerations.mp4 |
33.53MB |
19. Using ChatGPT for ethical considerations.vtt |
7.47KB |
20. 2.11.Covariance-exercise.xlsx |
20.23KB |
20. 2.11.Covariance-exercise-solution.xlsx |
29.51KB |
20. Covariance Exercise.html |
81B |
20. Reordering Columns in a Pandas DataFrame in Python.mp4 |
10.00MB |
20. Reordering Columns in a Pandas DataFrame in Python.vtt |
1.87KB |
21. Correlation Coefficient.mp4 |
19.32MB |
21. Correlation Coefficient.vtt |
4.96KB |
21. EXERCISE - Reordering Columns in a Pandas DataFrame in Python.html |
167B |
22. 2.12.Correlation-exercise.xlsx |
29.30KB |
22. 2.12.Correlation-exercise-solution.xlsx |
29.48KB |
22. Correlation Coefficient Exercise.html |
81B |
22. SOLUTION - Reordering Columns in a Pandas DataFrame in Python.html |
478B |
23. Absenteeism-Exercise-Preprocessing-df-reason-mod.ipynb |
4.82KB |
23. Creating Checkpoints while Coding in Jupyter.mp4 |
17.33MB |
23. Creating Checkpoints while Coding in Jupyter.vtt |
3.67KB |
24. EXERCISE - Creating Checkpoints while Coding in Jupyter.html |
137B |
25. SOLUTION - Creating Checkpoints while Coding in Jupyter.html |
118B |
26. Analyzing the Dates from the Initial Data Set.mp4 |
40.12MB |
26. Analyzing the Dates from the Initial Data Set.vtt |
8.87KB |
27. Extracting the Month Value from the Date Column.mp4 |
33.90MB |
27. Extracting the Month Value from the Date Column.vtt |
7.99KB |
28. Extracting the Day of the Week from the Date Column.mp4 |
19.14MB |
28. Extracting the Day of the Week from the Date Column.vtt |
4.78KB |
29. Absenteeism-Exercise-Preprocessing-ChP-df-date-reason-mod.ipynb |
7.33KB |
29. Absenteeism-Exercise-Preprocessing-LECTURES.ipynb |
7.60MB |
29. Absenteeism-Exercise-Removing-the-Date-Column-SOLUTION.ipynb |
8.33KB |
29. EXERCISE - Removing the Date Column.html |
1.21KB |
30. Analyzing Several Straightforward Columns for this Exercise.mp4 |
14.32MB |
30. Analyzing Several Straightforward Columns for this Exercise.vtt |
4.59KB |
31. Working on Education, Children, and Pets.mp4 |
27.03MB |
31. Working on Education, Children, and Pets.vtt |
5.96KB |
32. Absenteeism-Exercise-EXERCISES-and-SOLUTIONS.ipynb |
4.13KB |
32. Absenteeism-Exercise-Preprocessing-df-preprocessed.ipynb |
8.51KB |
32. Final Remarks of this Section.mp4 |
13.54MB |
32. Final Remarks of this Section.vtt |
2.68KB |
33. A Note on Exporting Your Data as a .csv File.html |
883B |
Marvel_Comics.csv |
12.99MB |
movies_metadata.csv |
32.85MB |