Torrent Info
Title The Data Science Course Complete Data Science Bootcamp 2025 (Dec-2024)
Category
Size 9.17GB

Files List
Please note that this page does not hosts or makes available any of the listed filenames. You cannot download any of those files from here.
01. 1.04.Real-life-example.csv 219.83KB
01. 2.13.Practical-example.Descriptive-statistics-lesson.xlsx 146.51KB
01. 3.17.Practical-example.Confidence-intervals-lesson.xlsx 1.74MB
01. 365-Data-Science-Data-Science-Interview-Questions-Guide.pdf 15.56MB
01. 4.10.Hypothesis-testing-section-practical-example.xlsx 51.90KB
01. Absenteeism-data.csv 32.05KB
01. Absenteeism-Exercise-Integration.ipynb 62.35KB
01. absenteeism-module.py 6.62KB
01. Absenteeism-new-data.csv 1.87KB
01. Absenteeism-predictions.csv 2.10KB
01. Absenteeism-preprocessed.csv 29.13KB
01. Additional-Python-Tools-Exercises.ipynb 11.41KB
01. Additional-Python-Tools-Lectures.ipynb 13.47KB
01. Additional-Python-Tools-Solutions.ipynb 25.52KB
01. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4 83.53MB
01. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.vtt 9.24KB
01. A Practical Example What You Will Learn in This Course.mp4 10.76MB
01. A Practical Example What You Will Learn in This Course.vtt 6.82KB
01. Are You Sure You're All Set.html 519B
01. Arithmetic-Operators-Exercise-Py3.ipynb 2.62KB
01. Arithmetic-Operators-Lecture-Py3.ipynb 3.53KB
01. Arithmetic-Operators-Solution-Py3.ipynb 4.24KB
01. Audiobooks-data.csv 710.77KB
01. Audiobooks-data.csv 710.77KB
01. Basic NN Example (Part 1).mp4 9.34MB
01. Basic NN Example (Part 1).vtt 4.54KB
01. Bonus Lecture Next Steps.html 4.33KB
01. Business Case Exploring the Dataset and Identifying Predictors.mp4 51.29MB
01. Business Case Exploring the Dataset and Identifying Predictors.vtt 11.01KB
01. Business Case Getting Acquainted with the Dataset.mp4 60.25MB
01. Business Case Getting Acquainted with the Dataset.vtt 10.96KB
01. Comparison Operators.mp4 4.16MB
01. Comparison Operators.vtt 2.57KB
01. Comparison-Operators-Exercise-Py3.ipynb 1.61KB
01. Comparison-Operators-Lecture-Py3.ipynb 2.53KB
01. Comparison-Operators-Solution-Py3.ipynb 2.41KB
01. Course-Notes-Basic-Probability.pdf 371.05KB
01. Course-Notes-Bayesian-Inference.pdf 386.01KB
01. Course-Notes-Cluster-Analysis.pdf 208.65KB
01. Course-Notes-Combinatorics.pdf 226.12KB
01. Course-notes-descriptive-statistics.pdf 482.21KB
01. Course-notes-descriptive-statistics.pdf 482.21KB
01. Course-notes-hypothesis-testing.pdf 656.44KB
01. Course-notes-inferential-statistics.pdf 382.32KB
01. Course-Notes-Logistic-Regression.pdf 335.17KB
01. Course-Notes-Probability-Distributions.pdf 463.95KB
01. Course-notes-regression-analysis.pdf 312.18KB
01. Course-notes-regression-analysis.pdf 312.18KB
01. Course-Notes-Section-2.pdf 578.08KB
01. Course-Notes-Section-6.pdf 936.42KB
01. data-preprocessing-homework.pdf 134.47KB
01. Data Science and Business Buzzwords Why are there so Many.mp4 15.59MB
01. Data Science and Business Buzzwords Why are there so Many.vtt 7.37KB
01. Debunking Common Misconceptions.mp4 58.86MB
01. Debunking Common Misconceptions.vtt 5.53KB
01. Defining a Function in Python.mp4 3.23MB
01. Defining a Function in Python.vtt 2.62KB
01. Defining-a-Function-in-Python-Lecture-Py3.ipynb 868B
01. df-preprocessed.csv 29.11KB
01. EXERCISE - Age vs Probability.html 385B
01. Exploring the Problem with a Machine Learning Mindset.mp4 12.96MB
01. Exploring the Problem with a Machine Learning Mindset.vtt 4.83KB
01. Finding the Job - What to Expect and What to Look for.mp4 40.03MB
01. Finding the Job - What to Expect and What to Look for.vtt 4.66KB
01. For Loops.mp4 12.96MB
01. For Loops.vtt 6.77KB
01. For-Loops-Exercise-Py3.ipynb 1.28KB
01. For-Loops-Lecture-Py3.ipynb 1.26KB
01. For-Loops-Solution-Py3.ipynb 1.80KB
01. Fundamentals of Combinatorics.mp4 5.94MB
01. Fundamentals of Combinatorics.vtt 1.47KB
01. Fundamentals of Probability Distributions.mp4 19.42MB
01. Fundamentals of Probability Distributions.vtt 8.40KB
01. Game Plan for this Python, SQL, and Tableau Business Exercise.mp4 19.67MB
01. Game Plan for this Python, SQL, and Tableau Business Exercise.vtt 5.57KB
01. Glossary.xlsx 19.97KB
01. How to Install TensorFlow 2.0.mp4 27.34MB
01. How to Install TensorFlow 2.0.vtt 6.57KB
01. Introduction.mp4 3.06MB
01. Introduction.vtt 1.67KB
01. Introduction to Cluster Analysis.mp4 14.46MB
01. Introduction to Cluster Analysis.vtt 4.96KB
01. Introduction to Logistic Regression.mp4 5.87MB
01. Introduction to Logistic Regression.vtt 1.82KB
01. Introduction to Neural Networks.mp4 10.49MB
01. Introduction to Neural Networks.vtt 6.22KB
01. Introduction to pandas Series.mp4 24.96MB
01. Introduction to pandas Series.vtt 10.85KB
01. Introduction to Programming.mp4 14.87MB
01. Introduction to Programming.vtt 7.29KB
01. Introduction-to-Python-Course-Notes.pdf 2.15MB
01. Introduction-to-Python-Course-Notes.pdf 2.15MB
01. Introduction to Regression Analysis.mp4 3.59MB
01. Introduction to Regression Analysis.vtt 2.33KB
01. Introduction-to-the-If-Statement-Exercise-Py3.ipynb 1.53KB
01. Introduction-to-the-If-Statement-Lecture-Py3.ipynb 1.14KB
01. Introduction-to-the-If-Statement-Solution-Py3.ipynb 2.19KB
01. Intro to the Case Study.mp4 10.42MB
01. Intro to the Case Study.vtt 3.74KB
01. K-Means Clustering.mp4 10.82MB
01. K-Means Clustering.vtt 6.60KB
01. Lending-company.csv 112.43KB
01. Lists.mp4 23.04MB
01. Lists.vtt 10.35KB
01. Lists-Exercise-Py3.ipynb 2.14KB
01. Lists-Lecture-Py3.ipynb 2.70KB
01. Lists-Solution-Py3.ipynb 3.18KB
01. Location.csv 13.49KB
01. Minimal-example-Part-1.ipynb 1.19KB
01. MNIST The Dataset.mp4 4.53MB
01. MNIST The Dataset.vtt 3.65KB
01. MNIST What is the MNIST Dataset.mp4 4.80MB
01. MNIST What is the MNIST Dataset.vtt 3.60KB
01. model 1.01KB
01. Multiple Linear Regression.mp4 5.68MB
01. Multiple Linear Regression.vtt 3.46KB
01. Necessary Programming Languages and Software Used in Data Science.mp4 82.38MB
01. Necessary Programming Languages and Software Used in Data Science.vtt 7.97KB
01. Null vs Alternative Hypothesis.mp4 31.94MB
01. Null vs Alternative Hypothesis.vtt 7.16KB
01. Object Oriented Programming.mp4 8.66MB
01. Object Oriented Programming.vtt 6.86KB
01. pandas-Fundamentals-Exercises.ipynb 30.96KB
01. pandas-Fundamentals-Lectures.ipynb 21.31KB
01. pandas-Fundamentals-Solutions.ipynb 118.35KB
01. Population and Sample.mp4 35.10MB
01. Population and Sample.vtt 5.84KB
01. Practical Example Descriptive Statistics.mp4 130.53MB
01. Practical Example Descriptive Statistics.vtt 20.99KB
01. Practical Example Hypothesis Testing.mp4 45.83MB
01. Practical Example Hypothesis Testing.vtt 8.62KB
01. Practical Example Inferential Statistics.mp4 69.01MB
01. Practical Example Inferential Statistics.vtt 13.91KB
01. Practical Example Linear Regression (Part 1).mp4 84.74MB
01. Practical Example Linear Regression (Part 1).vtt 14.86KB
01. Preprocessing Introduction.mp4 9.23MB
01. Preprocessing Introduction.vtt 4.07KB
01. Probability in Finance.mp4 40.35MB
01. Probability in Finance.vtt 10.08KB
01. Probability-in-Finance-Homework.pdf 110.68KB
01. Probability-in-Finance-Solutions.pdf 184.46KB
01. READ ME!!!!.html 564B
01. Region.csv 10.22KB
01. Sales-products.csv 152.28KB
01. scaler 1.86KB
01. Sets and Events.mp4 17.67MB
01. Sets and Events.vtt 5.45KB
01. Shortcuts-for-Jupyter.pdf 619.17KB
01. Shortcuts-for-Jupyter.pdf 619.17KB
01. sklearn-Linear-Regression-Practical-Example-Part-1.ipynb 166.91KB
01. sklearn-Linear-Regression-Practical-Example-Part-1-with-comments.ipynb 171.38KB
01. Statistics-Glossary.xlsx 20.26KB
01. Stochastic Gradient Descent.mp4 7.83MB
01. Stochastic Gradient Descent.vtt 4.83KB
01. Summary on What You've Learned.mp4 9.84MB
01. Summary on What You've Learned.vtt 5.48KB
01. Techniques for Working with Traditional Data.mp4 107.18MB
01. Techniques for Working with Traditional Data.vtt 10.96KB
01. The Basic Probability Formula.mp4 29.40MB
01. The Basic Probability Formula.vtt 8.96KB
01. The IF Statement.mp4 6.71MB
01. The IF Statement.vtt 3.73KB
01. The Linear Regression Model.mp4 13.48MB
01. The Linear Regression Model.vtt 8.13KB
01. The Reason Behind These Disciplines.mp4 46.77MB
01. The Reason Behind These Disciplines.vtt 6.54KB
01. Traditional data science methods and the role of ChatGPT.mp4 26.16MB
01. Traditional data science methods and the role of ChatGPT.vtt 7.20KB
01. Types of Clustering.mp4 9.01MB
01. Types of Clustering.vtt 5.07KB
01. Types of Data.mp4 43.19MB
01. Types of Data.vtt 5.82KB
01. Using Arithmetic Operators in Python.mp4 8.63MB
01. Using Arithmetic Operators in Python.vtt 4.37KB
01. Using the .format() Method.mp4 25.69MB
01. Using the .format() Method.vtt 12.66KB
01. Variables.mp4 8.94MB
01. Variables.vtt 4.80KB
01. Variables-Exercise-Py3.ipynb 2.23KB
01. Variables-Lecture-Py3.ipynb 3.61KB
01. Variables-Solution-Py3.ipynb 3.79KB
01. What are Confidence Intervals.mp4 28.61MB
01. What are Confidence Intervals.vtt 3.22KB
01. What are Data, Servers, Clients, Requests, and Responses.mp4 19.51MB
01. What are Data, Servers, Clients, Requests, and Responses.vtt 6.29KB
01. What is a Layer.mp4 5.17MB
01. What is a Layer.vtt 2.65KB
01. What is a Matrix.mp4 11.94MB
01. What is a Matrix.vtt 4.63KB
01. What is Initialization.mp4 8.90MB
01. What is Initialization.vtt 3.74KB
01. What is Overfitting.mp4 10.81MB
01. What is Overfitting.vtt 5.87KB
01. What is sklearn and How is it Different from Other Packages.mp4 8.48MB
01. What is sklearn and How is it Different from Other Packages.vtt 3.62KB
01. What to Expect from the Following Sections.html 2.48KB
01. What to Expect from this Part.mp4 11.72MB
01. What to Expect from this Part.vtt 4.83KB
02. 1.02.Multiple-linear-regression.csv 1.09KB
02. 1.04.Real-life-example.csv 219.83KB
02. 2.01.Admittance.csv 1.58KB
02. 2.13.Practical-example.Descriptive-statistics-exercise.xlsx 120.27KB
02. 2.13.Practical-example.Descriptive-statistics-exercise-solution.xlsx 146.38KB
02. 3.01.Country-clusters.csv 200B
02. 3.17.Practical-example.Confidence-intervals-exercise.xlsx 1.73MB
02. 3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx 1.82MB
02. 3.2.What-is-a-distribution-lesson.xlsx 19.46KB
02. 3.9.Population-variance-known-z-score-lesson.xlsx 11.21KB
02. 3.9.The-z-table.xlsx 25.58KB
02. 4.10.Hypothesis-testing-section-practical-example-exercise.xlsx 43.69KB
02. 4.10.Hypothesis-testing-section-practical-example-exercise-solution.xlsx 44.27KB
02. Absenteeism-predictions.csv 2.10KB
02. Add-an-Else-Statement-Exercise-Py3.ipynb 1.02KB
02. Add-an-Else-Statement-Lecture-Py3.ipynb 1.76KB
02. Add-an-Else-Statement-Solution-Py3.ipynb 1.40KB
02. Adjusted R-Squared.mp4 34.20MB
02. Adjusted R-Squared.vtt 7.51KB
02. Admittance.ipynb 3.54KB
02. Admittance-with-comments.ipynb 5.32KB
02. Analyzing Age vs Probability in Tableau.mp4 38.68MB
02. Analyzing Age vs Probability in Tableau.vtt 10.24KB
02. A Note on Completing the Upcoming Coding Exercises.html 2.96KB
02. A Simple Example in Python.mp4 21.88MB
02. A Simple Example in Python.vtt 5.91KB
02. A Simple Example of Clustering.mp4 34.18MB
02. A Simple Example of Clustering.vtt 9.74KB
02. Basic NN Example (Part 2).mp4 15.23MB
02. Basic NN Example (Part 2).vtt 6.69KB
02. Business Case Outlining the Solution.mp4 3.04MB
02. Business Case Outlining the Solution.mp4 4.16MB
02. Business Case Outlining the Solution.vtt 1.91KB
02. Business Case Outlining the Solution.vtt 2.60KB
02. Computing Expected Values.mp4 45.66MB
02. Computing Expected Values.vtt 6.95KB
02. Confidence Intervals; Population Variance Known; Z-score.mp4 52.16MB
02. Confidence Intervals; Population Variance Known; Z-score.vtt 9.61KB
02. Correlation vs Regression.mp4 3.84MB
02. Correlation vs Regression.vtt 2.16KB
02. Country-clusters.ipynb 3.31KB
02. Country-clusters-with-comments.ipynb 5.80KB
02. Course-Notes-Cluster-Analysis.pdf 208.65KB
02. Course-notes-inferential-statistics.pdf 382.32KB
02. Course-Notes-Logistic-Regression.pdf 335.17KB
02. Course-Notes-Section-2.pdf 578.08KB
02. Course-Notes-Section-6.pdf 936.42KB
02. Creating-a-Function-with-a-Parameter-Exercise-Py3.ipynb 1.16KB
02. Creating-a-Function-with-a-Parameter-Lecture-Py3.ipynb 1.59KB
02. Creating-a-Function-with-a-Parameter-Solution-Py3.ipynb 1.79KB
02. Creating the Targets for the Logistic Regression.mp4 32.44MB
02. Creating the Targets for the Logistic Regression.vtt 8.72KB
02. Dendrogram.mp4 18.29MB
02. Dendrogram.vtt 7.58KB
02. Deploying the 'absenteeism_module' - Part I.mp4 19.67MB
02. Deploying the 'absenteeism_module' - Part I.vtt 4.98KB
02. Further Reading on Null and Alternative Hypothesis.html 2.29KB
02. Help-Yourself-with-Methods-Exercise-Py3.ipynb 1.91KB
02. Help-Yourself-with-Methods-Lecture-Py3.ipynb 4.39KB
02. Help-Yourself-with-Methods-Solution-Py3.ipynb 2.83KB
02. How are we Going to Approach this Section.mp4 5.30MB
02. How are we Going to Approach this Section.vtt 3.03KB
02. How to Create a Function with a Parameter.mp4 9.99MB
02. How to Create a Function with a Parameter.vtt 4.52KB
02. How to install ChatGPT.mp4 5.22MB
02. How to install ChatGPT.vtt 2.05KB
02. How to Install TensorFlow 1.mp4 5.00MB
02. How to Install TensorFlow 1.vtt 3.40KB
02. Importing the Absenteeism Data in Python.mp4 19.52MB
02. Importing the Absenteeism Data in Python.vtt 4.04KB
02. Iterating Over Range Objects.mp4 12.61MB
02. Iterating Over Range Objects.vtt 6.43KB
02. Levels of Measurement.mp4 32.19MB
02. Levels of Measurement.vtt 4.83KB
02. Logical and Identity Operators.mp4 19.01MB
02. Logical and Identity Operators.vtt 5.97KB
02. Logical-and-Identity-Operators-Lecture-Py3.ipynb 5.86KB
02. Logical-and-Identity-Operators-Solution-Py3.ipynb 3.43KB
02. Minimal-example-Part-2.ipynb 3.65KB
02. MNIST How to Tackle the MNIST.mp4 7.94MB
02. MNIST How to Tackle the MNIST.mp4 8.01MB
02. MNIST How to Tackle the MNIST.vtt 3.63KB
02. MNIST How to Tackle the MNIST.vtt 3.84KB
02. Modules and Packages.mp4 2.08MB
02. Modules and Packages.vtt 1.45KB
02. Multiple-linear-regression-and-Adjusted-R-squared.ipynb 2.15KB
02. Multiple-linear-regression-and-Adjusted-R-squared-with-comments.ipynb 2.80KB
02. Numbers-and-Boolean-Values-Exercise-Py3.ipynb 2.29KB
02. Numbers and Boolean Values in Python.mp4 6.57MB
02. Numbers and Boolean Values in Python.vtt 3.75KB
02. Numbers-and-Boolean-Values-Lecture-Py3.ipynb 3.36KB
02. Numbers-and-Boolean-Values-Solution-Py3.ipynb 3.23KB
02. Permutations and How to Use Them.mp4 17.52MB
02. Permutations and How to Use Them.vtt 4.41KB
02. Practical Example Descriptive Statistics Exercise.html 81B
02. Practical Example Hypothesis Testing Exercise.html 81B
02. Practical Example Inferential Statistics Exercise.html 81B
02. Practical Example Linear Regression (Part 2).mp4 31.86MB
02. Practical Example Linear Regression (Part 2).vtt 8.33KB
02. Probability in Statistics.mp4 31.60MB
02. Probability in Statistics.vtt 9.12KB
02. Problems with Gradient Descent.mp4 3.65MB
02. Problems with Gradient Descent.vtt 2.99KB
02. Real Life Examples of Traditional Data.mp4 18.37MB
02. Real Life Examples of Traditional Data.vtt 2.33KB
02. Scalars and Vectors.mp4 8.54MB
02. Scalars and Vectors.vtt 4.01KB
02. sklearn-Linear-Regression-Practical-Example-Part-2.ipynb 328.74KB
02. sklearn-Linear-Regression-Practical-Example-Part-2-with-comments.ipynb 335.63KB
02. Some Examples of Clusters.mp4 35.86MB
02. Some Examples of Clusters.vtt 6.25KB
02. TensorFlow Outline and Comparison with Other Libraries.mp4 15.29MB
02. TensorFlow Outline and Comparison with Other Libraries.vtt 5.49KB
02. The Business Task.mp4 11.28MB
02. The Business Task.vtt 4.07KB
02. The Double Equality Sign.mp4 2.72MB
02. The Double Equality Sign.vtt 1.90KB
02. The-Double-Equality-Sign-Exercise-Py3.ipynb 838B
02. The-Double-Equality-Sign-Lecture-Py3.ipynb 1.45KB
02. The-Double-Equality-Sign-Solution-Py3.ipynb 1.14KB
02. The ELSE Statement.mp4 6.04MB
02. The ELSE Statement.vtt 3.25KB
02. The Naive Bayes Algorithm.mp4 42.06MB
02. The Naive Bayes Algorithm.vtt 6.08KB
02. Training the Model.mp4 7.72MB
02. Training the Model.vtt 4.74KB
02. Types of Basic Preprocessing.mp4 3.25MB
02. Types of Basic Preprocessing.vtt 1.85KB
02. Types of Probability Distributions.mp4 35.59MB
02. Types of Probability Distributions.vtt 10.44KB
02. Types of Simple Initializations.mp4 5.73MB
02. Types of Simple Initializations.vtt 3.78KB
02. Underfitting and Overfitting for Classification.mp4 14.01MB
02. Underfitting and Overfitting for Classification.vtt 2.83KB
02. Using Methods.mp4 30.36MB
02. Using Methods.vtt 8.72KB
02. Ways Sets Can Interact.mp4 11.33MB
02. Ways Sets Can Interact.vtt 4.62KB
02. What's Further out there in terms of Machine Learning.mp4 4.79MB
02. What's Further out there in terms of Machine Learning.vtt 2.70KB
02. What are Data Connectivity, APIs, and Endpoints.mp4 60.22MB
02. What are Data Connectivity, APIs, and Endpoints.vtt 9.17KB
02. What Does the Course Cover.mp4 9.56MB
02. What Does the Course Cover.vtt 5.44KB
02. What is a Deep Net.mp4 9.13MB
02. What is a Deep Net.vtt 3.26KB
02. What is a Distribution.mp4 17.20MB
02. What is a Distribution.vtt 5.90KB
02. What is the difference between Analysis and Analytics.mp4 11.16MB
02. What is the difference between Analysis and Analytics.vtt 5.12KB
02. While Loops and Incrementing.mp4 20.18MB
02. While Loops and Incrementing.vtt 6.05KB
02. While-Loops-and-Incrementing-Exercise-Py3.ipynb 1.12KB
02. While-Loops-and-Incrementing-Lecture-Py3.ipynb 1.08KB
02. While-Loops-and-Incrementing-Solution-Py3.ipynb 1.75KB
02. Why Python.mp4 12.19MB
02. Why Python.vtt 7.17KB
03. 1.01.Simple-linear-regression.csv 922B
03. 12.3.TensorFlow-MNIST-with-comments-Part-1.ipynb 3.89KB
03. 2.3.Categorical-variables.Visualization-techniques-lesson.xlsx 30.77KB
03. 3.9.Population-variance-known-z-score-exercise.xlsx 10.83KB
03. 3.9.Population-variance-known-z-score-exercise-solution.xlsx 11.16KB
03. 3.9.The-z-table.xlsx 25.58KB
03. 365-DataScience-Diagram.pdf 323.08KB
03. A Note on Installing Packages in Anaconda.html 2.28KB
03. A Note on Multicollinearity.html 849B
03. Another-Way-to-Define-a-Function-Exercise-Py3.ipynb 1.24KB
03. Another-Way-to-Define-a-Function-Lecture-Py3.ipynb 3.29KB
03. Another-Way-to-Define-a-Function-Solution-Py3.ipynb 1.98KB
03. A Simple Example of Clustering - Exercise.html 87B
03. A-Simple-Example-of-Clustering-Exercise.ipynb 3.62KB
03. A-Simple-Example-of-Clustering-Solution.ipynb 4.65KB
03. Audiobooks-data.csv 710.77KB
03. Basic NN Example (Part 3).mp4 15.66MB
03. Basic NN Example (Part 3).vtt 4.40KB
03. Business Analytics, Data Analytics, and Data Science An Introduction.mp4 14.60MB
03. Business Analytics, Data Analytics, and Data Science An Introduction.vtt 9.62KB
03. Business Case Balancing the Dataset.mp4 22.32MB
03. Business Case Balancing the Dataset.vtt 4.32KB
03. Categorical Variables - Visualization Techniques.mp4 27.49MB
03. Categorical Variables - Visualization Techniques.vtt 6.71KB
03. Characteristics of Discrete Distributions.mp4 9.42MB
03. Characteristics of Discrete Distributions.vtt 2.56KB
03. Checking the Content of the Data Set.mp4 53.99MB
03. Checking the Content of the Data Set.vtt 7.14KB
03. Confidence Intervals; Population Variance Known; Z-score; Exercise.html 81B
03. Countries-exercise.csv 8.27KB
03. Country-clusters-standardized.csv 244B
03. Course-notes-hypothesis-testing.pdf 656.44KB
03. Create-Lists-with-the-range-Function-Exercise-Py3.ipynb 1.45KB
03. Create-Lists-with-the-range-Function-Lecture-Py3.ipynb 1.34KB
03. Create-Lists-with-the-range-Function-Solution-Py3.ipynb 2.25KB
03. DeepMind and Deep Learning.html 1.05KB
03. Defining a Function in Python - Part II.mp4 6.45MB
03. Defining a Function in Python - Part II.vtt 3.07KB
03. Deploying the 'absenteeism_module' - Part II.mp4 45.14MB
03. Deploying the 'absenteeism_module' - Part II.vtt 8.03KB
03. Difference between Classification and Clustering.mp4 9.67MB
03. Difference between Classification and Clustering.vtt 3.62KB
03. Digging into a Deep Net.mp4 23.68MB
03. Digging into a Deep Net.vtt 6.90KB
03. Download All Resources and Important FAQ.html 21.34KB
03. Else-If-for-Brief-Elif-Exercise-Py3.ipynb 1.75KB
03. Else-If-for-Brief-Elif-Lecture-Py3.ipynb 3.24KB
03. Else-If-for-Brief-Elif-Solution-Py3.ipynb 2.40KB
03. EXERCISE - Reasons vs Probability.html 397B
03. FAQ-The-Data-Science-Course.pdf 306.10KB
03. Frequency.mp4 37.37MB
03. Frequency.vtt 6.93KB
03. Geometrical Representation of the Linear Regression Model.mp4 2.27MB
03. Geometrical Representation of the Linear Regression Model.vtt 1.74KB
03. Heatmaps.ipynb 1.82KB
03. Heatmaps.mp4 18.50MB
03. Heatmaps.vtt 6.18KB
03. Heatmaps-with-comments.ipynb 17.66KB
03. How ChatGPT can boost your productivity.mp4 5.38MB
03. How ChatGPT can boost your productivity.vtt 2.44KB
03. How to Reassign Values.mp4 1.86MB
03. How to Reassign Values.vtt 1.32KB
03. Intersection of Sets.mp4 11.02MB
03. Intersection of Sets.vtt 2.59KB
03. Introducing the Data Set.mp4 24.24MB
03. Introducing the Data Set.vtt 4.34KB
03. Introduction to Nested For Loops.mp4 12.17MB
03. Introduction to Nested For Loops.vtt 8.52KB
03. Linear Algebra and Geometry.mp4 13.73MB
03. Linear Algebra and Geometry.vtt 4.10KB
03. List Slicing.mp4 19.17MB
03. List Slicing.vtt 5.53KB
03. List-Slicing-Exercise-Py3.ipynb 2.79KB
03. List-Slicing-Lecture-Py3.ipynb 5.02KB
03. List-Slicing-Solution-Py3.ipynb 4.29KB
03. Lists with the range() Function.mp4 16.07MB
03. Lists with the range() Function.vtt 8.58KB
03. Logistic vs Logit Function.mp4 23.74MB
03. Logistic vs Logit Function.vtt 5.07KB
03. Minimal-example-Part-3.ipynb 6.79KB
03. MNIST Importing the Relevant Packages and Loading the Data.mp4 12.23MB
03. MNIST Importing the Relevant Packages and Loading the Data.vtt 3.05KB
03. MNIST Relevant Packages.mp4 11.25MB
03. MNIST Relevant Packages.vtt 2.19KB
03. Momentum.mp4 5.18MB
03. Momentum.vtt 3.59KB
03. Multiple Linear Regression Exercise.html 76B
03. Multiple-Linear-Regression-Exercise.ipynb 2.45KB
03. Multiple-Linear-Regression-Exercise-Solution.ipynb 13.39KB
03. Probability-Cheat-Sheet.pdf 320.28KB
03. Probability in Data Science.mp4 14.24MB
03. Probability in Data Science.vtt 7.11KB
03. Python Strings.mp4 19.72MB
03. Python Strings.vtt 7.65KB
03. real-estate-price-size-year.csv 2.35KB
03. Reassign-Values-Exercise-Py3.ipynb 1.67KB
03. Reassign-Values-Lecture-Py3.ipynb 3.08KB
03. Reassign-Values-Solution-Py3.ipynb 2.12KB
03. Rejection Region and Significance Level.mp4 38.68MB
03. Rejection Region and Significance Level.vtt 8.62KB
03. Selecting the Inputs for the Logistic Regression.mp4 8.67MB
03. Selecting the Inputs for the Logistic Regression.vtt 3.58KB
03. Simple Linear Regression with sklearn.mp4 27.45MB
03. Simple Linear Regression with sklearn.vtt 7.61KB
03. Simple Operations with Factorials.mp4 10.51MB
03. Simple Operations with Factorials.vtt 3.39KB
03. sklearn-Simple-Linear-Regression.ipynb 4.92KB
03. sklearn-Simple-Linear-Regression-with-comments.ipynb 6.06KB
03. Standardization.mp4 12.07MB
03. Standardization.vtt 6.14KB
03. State-of-the-Art Method - (Xavier) Glorot Initialization.mp4 5.46MB
03. State-of-the-Art Method - (Xavier) Glorot Initialization.vtt 3.79KB
03. Strings-Exercise-Py3.ipynb 2.61KB
03. Strings-Lecture-Py3.ipynb 7.56KB
03. Strings-Solution-Py3.ipynb 5.45KB
03. Taking a Closer Look at APIs.mp4 24.51MB
03. Taking a Closer Look at APIs.vtt 10.90KB
03. Techniques for Working with Big Data.mp4 62.12MB
03. Techniques for Working with Big Data.vtt 5.84KB
03. TensorFlow 1 vs TensorFlow 2.mp4 15.29MB
03. TensorFlow 1 vs TensorFlow 2.vtt 4.01KB
03. TensorFlow-MNIST-Part1-with-comments.ipynb 3.97KB
03. The ELIF Statement.mp4 14.23MB
03. The ELIF Statement.vtt 6.81KB
03. The Importance of Working with a Balanced Dataset.mp4 27.25MB
03. The Importance of Working with a Balanced Dataset.vtt 4.38KB
03. The Normal Distribution.mp4 13.07MB
03. The Normal Distribution.vtt 5.20KB
03. Tokenization and Vectorization.mp4 15.81MB
03. Tokenization and Vectorization.vtt 7.92KB
03. Types of Machine Learning.mp4 13.05MB
03. Types of Machine Learning.vtt 5.48KB
03. What is the Standard Library.mp4 5.05MB
03. What is the Standard Library.vtt 3.86KB
03. What is Validation.mp4 8.38MB
03. What is Validation.vtt 4.99KB
03. Why Jupyter.mp4 8.00MB
03. Why Jupyter.vtt 4.21KB
03. Working with Methods in Python - Part I.mp4 13.21MB
03. Working with Methods in Python - Part I.vtt 7.21KB
04. 0.6.4-Using-a-Function-in-another-Function-Exercise-Py3.ipynb 1.04KB
04. 0.6.4-Using-a-Function-in-another-Function-Lecture-Py3.ipynb 1015B
04. 0.6.4-Using-a-Function-in-another-Function-Solution-Py3.ipynb 1.60KB
04. 1.01.Simple-linear-regression.csv 922B
04. 12.4.TensorFlow-MNIST-with-comments-Part-2.ipynb 6.10KB
04. 2.3.Categorical-variables.Visualization-techniques-exercise.xlsx 15.24KB
04. 2.3.Categorical-variables.Visualization-techniques-exercise-solution.xlsx 41.11KB
04. 3.4.Standard-normal-distribution-lesson.xlsx 10.38KB
04. 365-DataScience.png 6.92MB
04. 365-DataScience-Diagram.pdf 323.08KB
04. Absenteeism-Exercise-Deploying-the-absenteeism-module.ipynb 973B
04. Add Comments.mp4 2.41MB
04. Add Comments.vtt 1.93KB
04. Add-Comments-Lecture-Py3.ipynb 1.03KB
04. Admittance-regression.ipynb 2.09KB
04. Admittance-regression-summary-error.ipynb 2.48KB
04. Admittance-regression-tables-fixed-error.ipynb 4.11KB
04. Analyzing Reasons vs Probability in Tableau.mp4 40.25MB
04. Analyzing Reasons vs Probability in Tableau.vtt 9.67KB
04. A Note on Boolean Values.mp4 4.24MB
04. A Note on Boolean Values.vtt 3.10KB
04. A-Note-on-Boolean-Values-Lecture-Py3.ipynb 791B
04. A Note on TensorFlow 2 Syntax.mp4 4.64MB
04. A Note on TensorFlow 2 Syntax.vtt 1.43KB
04. An overview of CNNs.mp4 13.39MB
04. An overview of CNNs.vtt 6.37KB
04. Arrays in Python - A Convenient Way To Represent Matrices.mp4 18.98MB
04. Arrays in Python - A Convenient Way To Represent Matrices.vtt 6.20KB
04. Audiobooks-data.csv 710.77KB
04. Basic NN Example (Part 4).mp4 39.97MB
04. Basic NN Example (Part 4).vtt 10.96KB
04. Building a Logistic Regression.mp4 8.59MB
04. Building a Logistic Regression.vtt 3.51KB
04. Business Case Preprocessing.mp4 74.41MB
04. Business Case Preprocessing.vtt 13.55KB
04. Business Case Preprocessing the Data.mp4 73.85MB
04. Business Case Preprocessing the Data.vtt 13.62KB
04. Categorical-data.ipynb 3.35KB
04. Categorical-data-with-comments.ipynb 5.62KB
04. Categorical Variables Exercise.html 81B
04. Clustering Categorical Data.mp4 10.35MB
04. Clustering Categorical Data.vtt 3.32KB
04. Communication between Software Products through Text Files.mp4 17.54MB
04. Communication between Software Products through Text Files.vtt 5.83KB
04. Conditional Statements and Loops.mp4 17.31MB
04. Conditional Statements and Loops.vtt 8.02KB
04. Confidence Interval Clarifications.mp4 18.93MB
04. Confidence Interval Clarifications.vtt 5.61KB
04. Continuing with BI, ML, and AI.mp4 47.55MB
04. Continuing with BI, ML, and AI.vtt 13.13KB
04. Data-Preprocessing-Medical-Data.ipynb 7.49KB
04. Data Preprocessing with ChatGPT.mp4 28.73MB
04. Data Preprocessing with ChatGPT.vtt 6.41KB
04. Discrete Distributions The Uniform Distribution.mp4 10.30MB
04. Discrete Distributions The Uniform Distribution.vtt 2.90KB
04. Events and Their Complements.mp4 25.84MB
04. Events and Their Complements.vtt 7.13KB
04. Exporting the Obtained Data Set as a .csv.html 998B
04. How to Use a Function within a Function.mp4 3.24MB
04. How to Use a Function within a Function.vtt 2.10KB
04. Imbalanced Data Sets.mp4 6.55MB
04. Imbalanced Data Sets.vtt 3.27KB
04. Importing Modules in Python.mp4 9.87MB
04. Importing Modules in Python.vtt 4.86KB
04. Installing Python and Jupyter.mp4 18.81MB
04. Installing Python and Jupyter.vtt 4.87KB
04. Introduction to Terms with Multiple Meanings.mp4 17.98MB
04. Introduction to Terms with Multiple Meanings.vtt 4.33KB
04. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4 17.52MB
04. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.vtt 6.33KB
04. Math Prerequisites.mp4 5.27MB
04. Math Prerequisites.vtt 4.37KB
04. Minimal-example-Part-4-Complete.ipynb 11.41KB
04. MNIST Model Outline.mp4 34.70MB
04. MNIST Model Outline.vtt 9.17KB
04. MNIST Preprocess the Data - Create a Validation Set and Scale It.mp4 22.90MB
04. MNIST Preprocess the Data - Create a Validation Set and Scale It.vtt 6.49KB
04. Non-Linearities and their Purpose.mp4 22.51MB
04. Non-Linearities and their Purpose.vtt 4.25KB
04. patients.csv 2.93KB
04. Practical Example Linear Regression (Part 3).mp4 16.67MB
04. Practical Example Linear Regression (Part 3).vtt 4.48KB
04. Preprocessing Categorical Data.mp4 5.44MB
04. Preprocessing Categorical Data.vtt 2.85KB
04. Python Packages Installation.mp4 23.67MB
04. Python Packages Installation.vtt 5.56KB
04. Real Life Examples of Big Data.mp4 13.05MB
04. Real Life Examples of Big Data.vtt 1.89KB
04. Scalars-Vectors-and-Matrices.ipynb 4.55KB
04. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp4 22.29MB
04. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.vtt 6.78KB
04. sklearn-Linear-Regression-Practical-Example-Part-3.ipynb 343.58KB
04. sklearn-Linear-Regression-Practical-Example-Part-3-with-comments.ipynb 351.47KB
04. sklearn-Simple-Linear-Regression.ipynb 26.07KB
04. sklearn-Simple-Linear-Regression-with-comments.ipynb 28.35KB
04. Solving Variations with Repetition.mp4 13.95MB
04. Solving Variations with Repetition.vtt 3.75KB
04. Standardizing the Data.mp4 15.15MB
04. Standardizing the Data.vtt 4.29KB
04. Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf 289.12KB
04. TensorFlow-Audiobooks-Preprocessing.ipynb 5.58KB
04. TensorFlow-Audiobooks-Preprocessing.ipynb 5.58KB
04. TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb 11.19KB
04. TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb 11.19KB
04. TensorFlow Intro.mp4 16.90MB
04. TensorFlow Intro.vtt 5.32KB
04. Test for Significance of the Model (F-Test).mp4 7.18MB
04. Test for Significance of the Model (F-Test).vtt 2.46KB
04. The Linear Model (Linear Algebraic Version).mp4 7.98MB
04. The Linear Model (Linear Algebraic Version).vtt 3.69KB
04. The Standard Normal Distribution.mp4 8.60MB
04. The Standard Normal Distribution.vtt 4.03KB
04. Training, Validation, and Test Datasets.mp4 9.40MB
04. Training, Validation, and Test Datasets.vtt 3.44KB
04. Triple Nested For Loops.mp4 33.00MB
04. Triple Nested For Loops.vtt 8.49KB
04. Tuples.mp4 18.21MB
04. Tuples.vtt 7.49KB
04. Tuples-Exercise-Py3.ipynb 2.07KB
04. Tuples-Lecture-Py3.ipynb 2.91KB
04. Tuples-Solution-Py3.ipynb 4.61KB
04. Type I Error and Type II Error.mp4 15.29MB
04. Type I Error and Type II Error.vtt 5.51KB
04. Union of Sets.mp4 24.18MB
04. Union of Sets.vtt 6.25KB
04. Use-Conditional-Statements-and-Loops-Together-Exercise-Py3.ipynb 2.10KB
04. Use-Conditional-Statements-and-Loops-Together-Lecture-Py3.ipynb 1.95KB
04. Use-Conditional-Statements-and-Loops-Together-Solution-Py3.ipynb 2.96KB
04. Working with Methods in Python - Part II.mp4 9.01MB
04. Working with Methods in Python - Part II.vtt 3.93KB
05. 1.01.Simple-linear-regression.csv 922B
05. 1.04.Real-life-example.csv 219.83KB
05. 12.5.TensorFlow-MNIST-with-comments-Part-3.ipynb 7.31KB
05. 2.4.Numerical-variables.Frequency-distribution-table-lesson.xlsx 11.44KB
05. 3.4.Standard-normal-distribution-exercise.xlsx 11.99KB
05. 3.4.Standard-normal-distribution-exercise-solution.xlsx 24.04KB
05. 4.4.Test-for-the-mean.Population-variance-known-lesson.xlsx 10.96KB
05. Activation Functions.mp4 8.85MB
05. Activation Functions.vtt 5.26KB
05. Actual Introduction to TensorFlow.mp4 9.05MB
05. Actual Introduction to TensorFlow.vtt 2.33KB
05. All-In-Exercise-Py3.ipynb 1.30KB
05. All-In-Lecture-Py3.ipynb 1.62KB
05. All-In-Solution-Py3.ipynb 1.90KB
05. A Note on Normalization.html 733B
05. An Overview of RNNs.mp4 6.96MB
05. An Overview of RNNs.vtt 3.96KB
05. Audiobooks-data.csv 710.77KB
05. Basic NN Example Exercises.html 1.66KB
05. Binary and One-Hot Encoding.mp4 8.55MB
05. Binary and One-Hot Encoding.vtt 5.31KB
05. Building a Logistic Regression - Exercise.html 87B
05. Building-a-Logistic-Regression-Exercise.ipynb 2.92KB
05. Building-a-Logistic-Regression-Solution.ipynb 4.44KB
05. Business Case Preprocessing Exercise.html 389B
05. Business Case Preprocessing the Data - Exercise.html 370B
05. Business Intelligence (BI) Techniques.mp4 52.91MB
05. Business Intelligence (BI) Techniques.vtt 8.82KB
05. Categorical.csv 10.34KB
05. Clustering Categorical Data - Exercise.html 87B
05. Clustering-Categorical-Data-Exercise.ipynb 3.78KB
05. Clustering-Categorical-Data-Solution.ipynb 4.90KB
05. Combining-Conditional-Statements-and-Functions-Exercise-Py3.ipynb 1.06KB
05. Combining-Conditional-Statements-and-Functions-Lecture-Py3.ipynb 1.29KB
05. Combining-Conditional-Statements-and-Functions-Solution-Py3.ipynb 1.65KB
05. Conditional Statements, Functions, and Loops.mp4 4.27MB
05. Conditional Statements, Functions, and Loops.vtt 2.47KB
05. Conditional Statements and Functions.mp4 6.05MB
05. Conditional Statements and Functions.vtt 3.59KB
05. diagnosis-mapping.csv 90B
05. Dictionaries.mp4 32.44MB
05. Dictionaries.vtt 8.87KB
05. Dictionaries-Exercise-Py3.ipynb 2.92KB
05. Dictionaries-Lecture-Py3.ipynb 4.35KB
05. Dictionaries-Solution-Py3.ipynb 6.16KB
05. Discrete Distributions The Bernoulli Distribution.mp4 15.12MB
05. Discrete Distributions The Bernoulli Distribution.vtt 5.22KB
05. Dummies and Variance Inflation Factor - Exercise.html 76B
05. Example-bank-data.csv 6.21KB
05. EXERCISE - Transportation Expense vs Probability.html 553B
05. First attempt at machine learning with ChatGPT.mp4 36.72MB
05. First attempt at machine learning with ChatGPT.vtt 6.39KB
05. First Regression in Python.mp4 29.60MB
05. First Regression in Python.vtt 8.25KB
05. Learning Rate Schedules Visualized.mp4 3.17MB
05. Learning Rate Schedules Visualized.vtt 2.25KB
05. Line-Continuation-Exercise-Py3.ipynb 1.14KB
05. Line-Continuation-Lecture-Py3.ipynb 779B
05. Line-Continuation-Solution-Py3.ipynb 1.50KB
05. List Comprehensions.mp4 43.21MB
05. List Comprehensions.vtt 12.83KB
05. Medical-Data-ML-Attempt.ipynb 4.36KB
05. Minimal-example-All-Exercises.ipynb 12.89KB
05. Minimal-example-Exercise-1-Solution.ipynb 69.00KB
05. Minimal-example-Exercise-2-Solution.ipynb 61.41KB
05. Minimal-example-Exercise-3.a.Solution.ipynb 67.89KB
05. Minimal-example-Exercise-3.b.Solution.ipynb 67.72KB
05. Minimal-example-Exercise-3.c.Solution.ipynb 70.13KB
05. Minimal-example-Exercise-3.d.Solution.ipynb 84.13KB
05. Minimal-example-Exercise-4-Solution.ipynb 66.52KB
05. Minimal-example-Exercise-5-Solution.ipynb 68.88KB
05. Minimal-example-Exercise-6.ipynb 61.76KB
05. Minimal-example-Exercise-6-Solution.ipynb 61.76KB
05. MNIST Loss and Optimization Algorithm.mp4 15.79MB
05. MNIST Loss and Optimization Algorithm.vtt 3.57KB
05. MNIST Preprocess the Data - Scale the Test Data - Exercise.html 79B
05. Mutually Exclusive Sets.mp4 10.58MB
05. Mutually Exclusive Sets.vtt 2.76KB
05. N-Fold Cross Validation.mp4 6.24MB
05. N-Fold Cross Validation.vtt 4.37KB
05. Numerical Variables - Frequency Distribution Table.mp4 17.70MB
05. Numerical Variables - Frequency Distribution Table.vtt 4.45KB
05. OLS Assumptions.mp4 5.26MB
05. OLS Assumptions.vtt 3.06KB
05. Overcome Imbalanced Data in Machine Learning.mp4 14.59MB
05. Overcome Imbalanced Data in Machine Learning.vtt 5.04KB
05. Parameters and Arguments in pandas.mp4 21.13MB
05. Parameters and Arguments in pandas.vtt 5.79KB
05. patients-preprocessed.csv 3.29KB
05. Shortcuts-for-Jupyter.pdf 619.17KB
05. Simple-linear-regression.ipynb 3.79KB
05. Simple-linear-regression-with-comments.ipynb 4.06KB
05. sklearn-Dummies-and-VIF-Exercise.ipynb 344.62KB
05. sklearn-Dummies-and-VIF-Exercise-Solution.ipynb 370.22KB
05. Software Integration - Explained.mp4 16.00MB
05. Software Integration - Explained.vtt 7.00KB
05. Solving Variations without Repetition.mp4 18.25MB
05. Solving Variations without Repetition.vtt 4.94KB
05. Splitting the Data for Training and Testing.mp4 36.06MB
05. Splitting the Data for Training and Testing.vtt 8.49KB
05. Student's T Distribution.mp4 13.68MB
05. Student's T Distribution.vtt 4.56KB
05. TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb 8.60KB
05. TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb 8.60KB
05. TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb 10.04KB
05. TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb 10.03KB
05. TensorFlow-Minimal-example-Part1.ipynb 1.66KB
05. TensorFlow-MNIST-Part2-with-comments.ipynb 6.39KB
05. Tensors.ipynb 2.08KB
05. Test for the Mean. Population Variance Known.mp4 36.94MB
05. Test for the Mean. Population Variance Known.vtt 8.07KB
05. The Linear Model with Multiple Inputs.mp4 7.91MB
05. The Linear Model with Multiple Inputs.vtt 2.81KB
05. The Standard Normal Distribution Exercise.html 81B
05. Traditional AI vs. Generative AI.mp4 24.51MB
05. Traditional AI vs. Generative AI.vtt 6.92KB
05. Types of File Formats Supporting TensorFlow.mp4 8.86MB
05. Types of File Formats Supporting TensorFlow.vtt 3.45KB
05. Understanding Jupyter's Interface - the Notebook Dashboard.mp4 6.07MB
05. Understanding Jupyter's Interface - the Notebook Dashboard.vtt 3.73KB
05. Understanding Line Continuation.mp4 1.20MB
05. Understanding Line Continuation.vtt 1.15KB
05. What's Regression Analysis - a Quick Refresher.html 2.84KB
05. What is a Tensor.mp4 15.54MB
05. What is a Tensor.vtt 3.81KB
06. 1.04.Real-life-example.csv 219.83KB
06. 12.6.TensorFlow-MNIST-with-comments-Part-4.ipynb 7.90KB
06. 2.4.Numerical-variables.Frequency-distribution-table-exercise-solution.xlsx 13.15KB
06. 3.11.Population-variance-unknown-t-score-lesson.xlsx 10.78KB
06. 3.11.The-t-table.xlsx 15.85KB
06. 4.4.Test-for-the-mean.Population-variance-known-exercise.xlsx 11.03KB
06. 4.4.Test-for-the-mean.Population-variance-known-exercise-solution.xlsx 11.22KB
06. 5.3.TensorFlow-Minimal-example-Part-1.ipynb 3.36KB
06. A1 Linearity.mp4 3.57MB
06. A1 Linearity.vtt 2.49KB
06. Activation Functions Softmax Activation.mp4 8.74MB
06. Activation Functions Softmax Activation.vtt 4.48KB
06. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).mp4 8.53MB
06. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).vtt 5.57KB
06. Adding-and-subtracting-matrices.ipynb 3.22KB
06. Additional-Python-Tools-Exercises.ipynb 11.41KB
06. Additional-Python-Tools-Lectures.ipynb 13.47KB
06. Additional-Python-Tools-Solutions.ipynb 25.52KB
06. Addition and Subtraction of Matrices.mp4 22.10MB
06. Addition and Subtraction of Matrices.vtt 4.24KB
06. Analyzing a client database with ChatGPT in Python.mp4 21.62MB
06. Analyzing a client database with ChatGPT in Python.vtt 5.17KB
06. Analyzing Transportation Expense vs Probability in Tableau.mp4 16.48MB
06. Analyzing Transportation Expense vs Probability in Tableau.vtt 7.65KB
06. An Invaluable Coding Tip.mp4 18.78MB
06. An Invaluable Coding Tip.vtt 3.15KB
06. Anonymous (Lambda) Functions.mp4 22.78MB
06. Anonymous (Lambda) Functions.vtt 10.46KB
06. An Overview of non-NN Approaches.mp4 16.08MB
06. An Overview of non-NN Approaches.vtt 5.74KB
06. Business Case Load the Preprocessed Data.mp4 13.81MB
06. Business Case Load the Preprocessed Data.vtt 4.67KB
06. Calculating the Accuracy of the Model.mp4 24.45MB
06. Calculating the Accuracy of the Model.vtt 5.30KB
06. Central Limit Theorem.mp4 23.22MB
06. Central Limit Theorem.vtt 5.61KB
06. Combinations-With-Repetition.pdf 207.41KB
06. Confidence Intervals; Population Variance Unknown; T-score.mp4 13.69MB
06. Confidence Intervals; Population Variance Unknown; T-score.vtt 5.40KB
06. Creating a Data Provider.mp4 56.30MB
06. Creating a Data Provider.vtt 8.25KB
06. Creating-Functions-Containing-a-Few-Arguments-Lecture-Py3.ipynb 1.72KB
06. customers.csv 1.56KB
06. Dependence and Independence of Sets.mp4 14.92MB
06. Dependence and Independence of Sets.vtt 3.47KB
06. Discrete Distributions The Binomial Distribution.mp4 30.60MB
06. Discrete Distributions The Binomial Distribution.vtt 8.82KB
06. Early Stopping or When to Stop Training.mp4 10.29MB
06. Early Stopping or When to Stop Training.vtt 6.97KB
06. First Regression in Python Exercise.html 1.33KB
06. Fitting the Model and Assessing its Accuracy.mp4 15.22MB
06. Fitting the Model and Assessing its Accuracy.vtt 7.29KB
06. Functions Containing a Few Arguments.mp4 2.81MB
06. Functions Containing a Few Arguments.vtt 1.44KB
06. How to Choose the Number of Clusters.mp4 26.87MB
06. How to Choose the Number of Clusters.vtt 7.57KB
06. How to Iterate over Dictionaries.mp4 18.38MB
06. How to Iterate over Dictionaries.vtt 7.82KB
06. Indexing Elements.mp4 2.36MB
06. Indexing Elements.vtt 1.67KB
06. Indexing-Elements-Exercise-Py3.ipynb 1.35KB
06. Indexing-Elements-Lecture-Py3.ipynb 1.32KB
06. Indexing-Elements-Solution-Py3.ipynb 2.17KB
06. Iterating-over-Dictionaries-Exercise-Py3.ipynb 2.19KB
06. Iterating-over-Dictionaries-Lecture-Py3.ipynb 1.08KB
06. Iterating-over-Dictionaries-Solution-Py3.ipynb 2.87KB
06. Loading the Dataset and Preprocessing.mp4 14.81MB
06. Loading the Dataset and Preprocessing.vtt 3.70KB
06. MNIST Preprocess the Data - Shuffle and Batch.mp4 32.69MB
06. MNIST Preprocess the Data - Shuffle and Batch.vtt 9.57KB
06. More Examples of Generative AI.mp4 30.54MB
06. More Examples of Generative AI.vtt 6.87KB
06. Numerical Variables Exercise.html 81B
06. orders.csv 37.73KB
06. Outlining the Model with TensorFlow 2.mp4 26.96MB
06. Outlining the Model with TensorFlow 2.vtt 8.40KB
06. Practical Example Linear Regression (Part 4).mp4 39.39MB
06. Practical Example Linear Regression (Part 4).vtt 11.86KB
06. Prerequisites for Coding in the Jupyter Notebooks.mp4 18.96MB
06. Prerequisites for Coding in the Jupyter Notebooks.vtt 7.89KB
06. products.csv 1.78KB
06. ratings.csv 3.44KB
06. real-estate-price-size.csv 1.86KB
06. real-estate-price-size.csv 1.86KB
06. Real Life Examples of Business Intelligence (BI).mp4 24.62MB
06. Real Life Examples of Business Intelligence (BI).vtt 2.26KB
06. Selecting-the-number-of-clusters.ipynb 4.53KB
06. Selecting-the-number-of-clusters-with-comments.ipynb 7.48KB
06. Simple-Linear-Regression-Exercise.ipynb 2.78KB
06. Simple-Linear-Regression-Exercise-Solution.ipynb 3.57KB
06. Simple Linear Regression with sklearn - Exercise.html 76B
06. Simple-Linear-Regression-with-sklearn-Exercise.ipynb 4.08KB
06. Simple-Linear-Regression-with-sklearn-Exercise-Solution.ipynb 26.61KB
06. sklearn-Linear-Regression-Practical-Example-Part-4.ipynb 397.23KB
06. sklearn-Linear-Regression-Practical-Example-Part-4-with-comments.ipynb 407.59KB
06. Solving Combinations.mp4 23.64MB
06. Solving Combinations.vtt 6.03KB
06. TensorFlow-Minimal-example-Part2.ipynb 9.06KB
06. Test for the Mean. Population Variance Known Exercise.html 81B
06. The Linear model with Multiple Inputs and Multiple Outputs.mp4 16.64MB
06. The Linear model with Multiple Inputs and Multiple Outputs.vtt 4.84KB
06. Types of File Formats, supporting Tensors.mp4 8.90MB
06. Types of File Formats, supporting Tensors.vtt 3.44KB
06. Using .unique() and .nunique().mp4 24.31MB
06. Using .unique() and .nunique().vtt 5.85KB
06. Using a Statistical Approach towards the Solution to the Exercise.mp4 9.90MB
06. Using a Statistical Approach towards the Solution to the Exercise.vtt 2.99KB
07. 1.02.Multiple-linear-regression.csv 1.07KB
07. 12.7.TensorFlow-MNIST-with-comments-Part-5.ipynb 8.53KB
07. 2.5.The-Histogram-lesson.xlsx 18.63KB
07. 3.11.Population-variance-unknown-t-score-exercise.xlsx 10.62KB
07. 3.11.Population-variance-unknown-t-score-exercise-solution.xlsx 11.10KB
07. 3.11.The-t-table.xlsx 15.85KB
07. 365-DataScience.png 6.92MB
07. 5.4.TensorFlow-Minimal-example-Part-2.ipynb 6.17KB
07. A2 No Endogeneity.mp4 9.24MB
07. A2 No Endogeneity.vtt 5.59KB
07. A Breakdown of our Data Science Infographic.mp4 45.37MB
07. A Breakdown of our Data Science Infographic.vtt 5.09KB
07. Adam (Adaptive Moment Estimation).mp4 7.14MB
07. Adam (Adaptive Moment Estimation).vtt 3.43KB
07. Analyzing a client database with ChatGPT in Python – analyzing top products.mp4 15.17MB
07. Analyzing a client database with ChatGPT in Python – analyzing top products.vtt 5.15KB
07. Backpropagation.mp4 20.34MB
07. Backpropagation.vtt 4.59KB
07. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.mp4 17.69MB
07. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.vtt 7.97KB
07. Built-in Functions in Python.mp4 10.19MB
07. Built-in Functions in Python.vtt 4.28KB
07. Business Case Load the Preprocessed Data - Exercise.html 79B
07. Business Case Model Outline.mp4 42.51MB
07. Business Case Model Outline.vtt 7.16KB
07. Confidence Intervals; Population Variance Unknown; T-score; Exercise.html 81B
07. Countries-exercise.csv 8.27KB
07. Creating a Summary Table with the Coefficients and Intercept.mp4 26.95MB
07. Creating a Summary Table with the Coefficients and Intercept.vtt 6.36KB
07. Discrete Distributions The Poisson Distribution.mp4 23.92MB
07. Discrete Distributions The Poisson Distribution.vtt 7.18KB
07. Dropping a Column from a DataFrame in Python.mp4 41.24MB
07. Dropping a Column from a DataFrame in Python.vtt 8.22KB
07. Dummy Variables - Exercise.html 713B
07. Errors when Adding Matrices.mp4 5.77MB
07. Errors when Adding Matrices.vtt 2.70KB
07. Errors-when-adding-scalars-vectors-and-matrices-in-Python.ipynb 3.17KB
07. Graphical Representation of Simple Neural Networks.mp4 7.78MB
07. Graphical Representation of Simple Neural Networks.vtt 2.69KB
07. How to Choose the Number of Clusters - Exercise.html 87B
07. How-to-Choose-the-Number-of-Clusters-Exercise.ipynb 5.55KB
07. How-to-Choose-the-Number-of-Clusters-Solution.ipynb 8.49KB
07. Interpreting the Result and Extracting the Weights and Bias.mp4 25.91MB
07. Interpreting the Result and Extracting the Weights and Bias.vtt 6.74KB
07. MNIST Batching and Early Stopping.mp4 9.48MB
07. MNIST Batching and Early Stopping.vtt 2.83KB
07. MNIST Preprocess the Data - Shuffle and Batch - Exercise.html 79B
07. Multiple Linear Regression with sklearn.mp4 8.30MB
07. Multiple Linear Regression with sklearn.vtt 4.25KB
07. Notable-Built-In-Functions-in-Python-Exercise-Py3.ipynb 3.66KB
07. Notable-Built-In-Functions-in-Python-Lecture-Py3.ipynb 4.51KB
07. Notable-Built-In-Functions-in-Python-Solution-Py3.ipynb 5.52KB
07. Online-p-value-calculator.pdf 1.15MB
07. Optimizing User Reviews Data Preprocessing & EDA.mp4 18.67MB
07. Optimizing User Reviews Data Preprocessing & EDA.vtt 5.97KB
07. Poisson-Expected-Value-and-Variance.pdf 145.99KB
07. p-value.mp4 33.75MB
07. p-value.vtt 5.28KB
07. sklearn-Multiple-Linear-Regression.ipynb 7.79KB
07. sklearn-Multiple-Linear-Regression-with-comments.ipynb 8.65KB
07. Standard error.mp4 13.51MB
07. Standard error.vtt 2.08KB
07. Structure-Your-Code-with-Indentation-Exercise-Py3.ipynb 956B
07. Structure-Your-Code-with-Indentation-Lecture-Py3.ipynb 958B
07. Structure-Your-Code-with-Indentation-Solution-Py3.ipynb 1.50KB
07. Structuring with Indentation.mp4 2.79MB
07. Structuring with Indentation.vtt 2.30KB
07. Symmetry-Explained.pdf 85.04KB
07. Symmetry of Combinations.mp4 13.74MB
07. Symmetry of Combinations.vtt 4.49KB
07. Techniques for Working with Traditional Methods.mp4 76.01MB
07. Techniques for Working with Traditional Methods.vtt 11.49KB
07. TensorFlow-Audiobooks-Machine-Learning-Part1-with-comments.ipynb 4.61KB
07. TensorFlow-Audiobooks-Outlining-the-model.ipynb 9.36KB
07. TensorFlow-Audiobooks-Outlining-the-model-with-comments.ipynb 10.34KB
07. TensorFlow-Minimal-example-Part3.ipynb 76.52KB
07. TensorFlow-MNIST-Part3-with-comments.ipynb 8.61KB
07. The Conditional Probability Formula.mp4 20.07MB
07. The Conditional Probability Formula.vtt 5.90KB
07. The Histogram.mp4 9.58MB
07. The Histogram.vtt 3.37KB
07. Understanding Logistic Regression Tables.mp4 14.59MB
07. Understanding Logistic Regression Tables.vtt 5.59KB
07. Using .sort_values().mp4 15.23MB
07. Using .sort_values().vtt 5.58KB
07. Using Seaborn for Graphs.mp4 7.38MB
07. Using Seaborn for Graphs.vtt 1.56KB
08. 1.02.Multiple-linear-regression.csv 1.07KB
08. 1.04.Real-life-example.csv 219.83KB
08. 12.8.TensorFlow-MNIST-with-comments-Part-6.ipynb 11.50KB
08. 2.5.The-Histogram-exercise.xlsx 15.50KB
08. 2.5.The-Histogram-exercise-solution.xlsx 17.10KB
08. 4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx 14.54KB
08. 5.5.TensorFlow-Minimal-example-Part-3.ipynb 8.65KB
08. A3 Normality and Homoscedasticity.mp4 27.36MB
08. A3 Normality and Homoscedasticity.vtt 7.05KB
08. Analyzing a client database with ChatGPT in Python – analyzing top clients, RFM.mp4 27.19MB
08. Analyzing a client database with ChatGPT in Python – analyzing top clients, RFM.vtt 5.84KB
08. Backpropagation Picture.mp4 8.06MB
08. Backpropagation Picture.vtt 3.80KB
08. Bank-data.csv 19.55KB
08. Basic NN Example with TF Loss Function and Gradient Descent.mp4 13.61MB
08. Basic NN Example with TF Loss Function and Gradient Descent.vtt 4.85KB
08. Business Case Learning and Interpreting the Result.mp4 29.40MB
08. Business Case Learning and Interpreting the Result.vtt 6.34KB
08. Business Case Optimization.mp4 26.94MB
08. Business Case Optimization.vtt 6.92KB
08. Calculating the Adjusted R-Squared in sklearn.mp4 16.90MB
08. Calculating the Adjusted R-Squared in sklearn.vtt 6.65KB
08. Characteristics of Continuous Distributions.mp4 21.25MB
08. Characteristics of Continuous Distributions.vtt 9.18KB
08. Customizing a TensorFlow 2 Model.mp4 16.76MB
08. Customizing a TensorFlow 2 Model.vtt 4.29KB
08. Estimators and Estimates.mp4 27.69MB
08. Estimators and Estimates.vtt 3.99KB
08. EXERCISE - Dropping a Column from a DataFrame in Python.html 870B
08. Furniture-store-data-analysis.ipynb 52.39KB
08. Histogram Exercise.html 81B
08. How to Interpret the Regression Table.mp4 28.73MB
08. How to Interpret the Regression Table.vtt 6.34KB
08. Interpreting the Coefficients for Our Problem.mp4 41.14MB
08. Interpreting the Coefficients for Our Problem.vtt 8.53KB
08. Introduction to pandas DataFrames - Part I.mp4 12.46MB
08. Introduction to pandas DataFrames - Part I.vtt 7.34KB
08. Margin of Error.mp4 23.10MB
08. Margin of Error.vtt 6.44KB
08. MNIST Learning.mp4 31.83MB
08. MNIST Learning.vtt 10.47KB
08. MNIST Outline the Model.mp4 22.07MB
08. MNIST Outline the Model.vtt 7.15KB
08. Practical Example Linear Regression (Part 5).mp4 50.42MB
08. Practical Example Linear Regression (Part 5).vtt 11.07KB
08. Pros and Cons of K-Means Clustering.mp4 11.12MB
08. Pros and Cons of K-Means Clustering.vtt 4.59KB
08. Real Life Examples of Traditional Methods.mp4 36.74MB
08. Real Life Examples of Traditional Methods.vtt 5.37KB
08. Reg Ex for Analyzing Text Review Data.mp4 16.18MB
08. Reg Ex for Analyzing Text Review Data.vtt 5.09KB
08. sklearn-Linear-Regression-Practical-Example-Part-5.ipynb 698.36KB
08. sklearn-Linear-Regression-Practical-Example-Part-5-with-comments.ipynb 711.05KB
08. sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared.ipynb 9.11KB
08. sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-with-comments.ipynb 10.41KB
08. Solving Combinations with Separate Sample Spaces.mp4 20.30MB
08. Solving Combinations with Separate Sample Spaces.vtt 4.07KB
08. Solving-Integrals.pdf 343.85KB
08. Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf 289.12KB
08. TensorFlow-Audiobooks-Machine-Learning-Part2-with-comments.ipynb 19.69KB
08. TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb 10.64KB
08. TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb 12.73KB
08. TensorFlow-Minimal-example-complete.ipynb 76.85KB
08. TensorFlow-Minimal-example-complete-with-comments.ipynb 82.29KB
08. TensorFlow-MNIST-Part4-with-comments.ipynb 10.49KB
08. Test for the Mean. Population Variance Unknown.mp4 19.70MB
08. Test for the Mean. Population Variance Unknown.vtt 5.96KB
08. The Law of Total Probability.mp4 14.21MB
08. The Law of Total Probability.vtt 3.91KB
08. Tranpose-of-a-matrix.ipynb 2.89KB
08. Transpose of a Matrix.mp4 14.21MB
08. Transpose of a Matrix.vtt 5.55KB
08. Understanding Logistic Regression Tables - Exercise.html 87B
08. Understanding-Logistic-Regression-Tables-Exercise.ipynb 3.16KB
08. Understanding-Logistic-Regression-Tables-Solution.ipynb 4.79KB
08. What is the Objective Function.mp4 6.18MB
08. What is the Objective Function.vtt 2.26KB
09. 1.02.Multiple-linear-regression.csv 1.07KB
09. 12.9.TensorFlow-MNIST-with-comments.ipynb 13.03KB
09. 2.6.Cross-table-and-scatter-plot.xlsx 26.12KB
09. 3.13.Confidence-intervals.Two-means.Dependent-samples-lesson.xlsx 10.47KB
09. 4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx 11.34KB
09. 4.6.Test-for-the-mean.Population-variance-unknown-exercise-solution.xlsx 12.63KB
09. 5.6.TensorFlow-Minimal-example-complete.ipynb 12.15KB
09. A4 No Autocorrelation.mp4 7.90MB
09. A4 No Autocorrelation.vtt 5.00KB
09. Backpropagation - A Peek into the Mathematics of Optimization.html 543B
09. Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf 182.38KB
09. Basic NN Example with TF Model Output.mp4 17.07MB
09. Basic NN Example with TF Model Output.vtt 7.85KB
09. Basic NN with TensorFlow Exercises.html 1.29KB
09. Business Case Interpretation.mp4 18.63MB
09. Business Case Interpretation.vtt 3.09KB
09. Business Case Setting an Early Stopping Mechanism.mp4 43.82MB
09. Business Case Setting an Early Stopping Mechanism.vtt 8.12KB
09. Calculating the Adjusted R-Squared in sklearn - Exercise.html 76B
09. Combinatorics in Real-Life The Lottery.mp4 16.38MB
09. Combinatorics in Real-Life The Lottery.vtt 4.22KB
09. Common Objective Functions L2-norm Loss.mp4 5.47MB
09. Common Objective Functions L2-norm Loss.vtt 2.94KB
09. Confidence intervals. Two means. Dependent samples.mp4 44.98MB
09. Confidence intervals. Two means. Dependent samples.vtt 8.46KB
09. Continuous Distributions The Normal Distribution.mp4 20.01MB
09. Continuous Distributions The Normal Distribution.vtt 5.09KB
09. Cross Tables and Scatter Plots.mp4 19.70MB
09. Cross Tables and Scatter Plots.vtt 6.92KB
09. Decomposition of Variability.mp4 8.79MB
09. Decomposition of Variability.vtt 4.47KB
09. Dot-product.ipynb 2.13KB
09. Dot Product.mp4 12.84MB
09. Dot Product.vtt 4.34KB
09. Exploratory data analysis (EDA) with ChatGPT - histogram and scatter plot.mp4 21.59MB
09. Exploratory data analysis (EDA) with ChatGPT - histogram and scatter plot.vtt 7.43KB
09. Introduction to pandas DataFrames - Part II.mp4 17.83MB
09. Introduction to pandas DataFrames - Part II.vtt 8.00KB
09. Linear Regression - Exercise.html 503B
09. Machine Learning (ML) Techniques.mp4 49.42MB
09. Machine Learning (ML) Techniques.vtt 9.31KB
09. MNIST Results and Testing.mp4 38.11MB
09. MNIST Results and Testing.vtt 8.21KB
09. MNIST Select the Loss and the Optimizer.mp4 10.65MB
09. MNIST Select the Loss and the Optimizer.vtt 3.03KB
09. Normal-Distribution-Exp-and-Var.pdf 144.08KB
09. sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise.ipynb 9.83KB
09. sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise-Solution.ipynb 10.31KB
09. SOLUTION - Dropping a Column from a DataFrame in Python.html 114B
09. Standardizing only the Numerical Variables (Creating a Custom Scaler).mp4 16.86MB
09. Standardizing only the Numerical Variables (Creating a Custom Scaler).vtt 5.24KB
09. TensorFlow-Audiobooks-Machine-Learning-Part3-with-comments.ipynb 10.06KB
09. TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb 10.64KB
09. TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb 12.73KB
09. TensorFlow-Minimal-example-All-exercises.ipynb 83.62KB
09. TensorFlow-Minimal-example-Exercise-1-Solution.ipynb 27.96KB
09. TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb 83.68KB
09. TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb 77.52KB
09. TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb 84.44KB
09. TensorFlow-MNIST-Part5-with-comments.ipynb 10.99KB
09. Test for the Mean. Population Variance Unknown Exercise.html 81B
09. The Additive Rule.mp4 11.09MB
09. The Additive Rule.vtt 2.66KB
09. To Standardize or not to Standardize.mp4 10.92MB
09. To Standardize or not to Standardize.vtt 6.26KB
09. Understanding Differences between Multinomial and Bernouilli Naive Bayes.mp4 13.86MB
09. Understanding Differences between Multinomial and Bernouilli Naive Bayes.vtt 5.38KB
09. What do the Odds Actually Mean.mp4 11.39MB
09. What do the Odds Actually Mean.vtt 4.41KB
10. 1.02.Multiple-linear-regression.csv 1.07KB
10. 2.02.Binary-predictors.csv 2.56KB
10. 2.6.Cross-table-and-scatter-plot-exercise.xlsx 16.28KB
10. 2.6.Cross-table-and-scatter-plot-exercise-solution.xlsx 40.44KB
10. 3.13.Confidence-intervals.Two-means.Dependent-samples-exercise.xlsx 13.74KB
10. 3.13.Confidence-intervals.Two-means.Dependent-samples-exercise-solution.xlsx 14.24KB
10. 4.7.Test-for-the-mean.Dependent-samples-lesson.xlsx 9.79KB
10. A5 No Multicollinearity.mp4 7.60MB
10. A5 No Multicollinearity.vtt 4.62KB
10. Analyzing the Reasons for Absence.mp4 27.63MB
10. Analyzing the Reasons for Absence.vtt 6.02KB
10. A Recap of Combinatorics.mp4 12.10MB
10. A Recap of Combinatorics.vtt 3.79KB
10. Basic NN Example with TF Exercises.html 1.60KB
10. Binary-predictors.ipynb 2.41KB
10. Binary Predictors in a Logistic Regression.mp4 24.86MB
10. Binary Predictors in a Logistic Regression.vtt 5.27KB
10. Business Case Testing the Model.mp4 4.40MB
10. Business Case Testing the Model.vtt 2.70KB
10. Common Objective Functions Cross-Entropy Loss.mp4 9.84MB
10. Common Objective Functions Cross-Entropy Loss.vtt 5.38KB
10. Confidence intervals. Two means. Dependent samples Exercise.html 81B
10. Continuous Distributions The Standard Normal Distribution.mp4 21.11MB
10. Continuous Distributions The Standard Normal Distribution.vtt 5.73KB
10. Cross Tables and Scatter Plots Exercise.html 81B
10. Dot Product of Matrices.mp4 34.31MB
10. Dot Product of Matrices.vtt 9.09KB
10. Dot-product-Part-2.ipynb 3.60KB
10. Exploratory data analysis (EDA) with ChatGPT - correlation matrix, outlier detec.mp4 33.71MB
10. Exploratory data analysis (EDA) with ChatGPT - correlation matrix, outlier detec.vtt 7.57KB
10. Feature Selection (F-regression).mp4 20.51MB
10. Feature Selection (F-regression).vtt 6.93KB
10. Interpreting the Coefficients of the Logistic Regression.mp4 15.21MB
10. Interpreting the Coefficients of the Logistic Regression.vtt 7.49KB
10. Machine Learning with Naïve Bayes (First Attempt).mp4 28.11MB
10. Machine Learning with Naïve Bayes (First Attempt).vtt 8.42KB
10. MNIST Exercises.html 2.16KB
10. MNIST Learning.mp4 30.99MB
10. MNIST Learning.vtt 7.95KB
10. pandas DataFrames - Common Attributes.mp4 25.65MB
10. pandas DataFrames - Common Attributes.vtt 6.56KB
10. properties.csv 2.66KB
10. Properties-analysis.ipynb 286.54KB
10. Relationship between Clustering and Regression.mp4 3.51MB
10. Relationship between Clustering and Regression.vtt 2.29KB
10. Setting an Early Stopping Mechanism - Exercise.html 192B
10. sklearn-Feature-Selection-with-F-regression.ipynb 10.44KB
10. sklearn-Feature-Selection-with-F-regression-with-comments.ipynb 12.99KB
10. TensorFlow-Minimal-Example-All-Exercises.ipynb 13.97KB
10. TensorFlow-Minimal-Example-Exercise-1-Solution.ipynb 23.63KB
10. TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb 25.54KB
10. TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb 25.51KB
10. TensorFlow-Minimal-Example-Exercise-2-3-Solution.ipynb 49.96KB
10. TensorFlow-Minimal-Example-Exercise-2-4-Solution.ipynb 21.75KB
10. TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb 26.71KB
10. TensorFlow-Minimal-Example-Exercise-4-Solution.ipynb 26.98KB
10. TensorFlow-MNIST-Exercises-All.ipynb 15.47KB
10. TensorFlow-MNIST-Part6-with-comments.ipynb 12.54KB
10. Test for the Mean. Dependent Samples.mp4 32.76MB
10. Test for the Mean. Dependent Samples.vtt 6.78KB
10. The Multiplication Law.mp4 20.19MB
10. The Multiplication Law.vtt 4.71KB
10. Types of Machine Learning.mp4 69.45MB
10. Types of Machine Learning.vtt 10.95KB
10. What is the OLS.mp4 22.46MB
10. What is the OLS.vtt 3.82KB
11. 0.TensorFlow-MNIST-take-note-of-time-Solution.ipynb 14.00KB
11. 1.02.Multiple-linear-regression.csv 1.07KB
11. 1.03.Dummies.csv 1.19KB
11. 1.TensorFlow-MNIST-Width-Solution.ipynb 14.84KB
11. 1.TensorFlow-MNIST-Width-Solution.ipynb 14.01KB
11. 2.7.Mean-median-and-mode-lesson.xlsx 10.49KB
11. 2.TensorFlow-MNIST-Depth-Solution.ipynb 15.31KB
11. 2.TensorFlow-MNIST-Depth-Solution.ipynb 14.87KB
11. 3.12.Example.csv 283B
11. 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-lesson.xlsx 9.83KB
11. 3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb 15.30KB
11. 3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb 16.81KB
11. 4.7.Test-for-the-mean.Dependent-samples-exercise.xlsx 12.80KB
11. 4.7.Test-for-the-mean.Dependent-samples-exercise-solution.xlsx 14.40KB
11. 4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb 15.11KB
11. 4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb 14.35KB
11. 5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb 14.74KB
11. 5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb 13.93KB
11. 6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb 15.12KB
11. 6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb 14.26KB
11. 7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb 15.18KB
11. 7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb 14.16KB
11. 8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb 20.58KB
11. 8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb 14.07KB
11. 9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb 15.80KB
11. 9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb 15.21KB
11. Additional-Exercises-Combinatorics.pdf 106.58KB
11. Additional-Exercises-Combinatorics-Solutions.pdf 245.67KB
11. A Note on Calculation of P-values with sklearn.html 372B
11. A Practical Example of Combinatorics.mp4 80.69MB
11. A Practical Example of Combinatorics.vtt 15.17KB
11. Assignment 1.html 1.62KB
11. Audiobooks-data.csv 710.77KB
11. Backward Elimination or How to Simplify Your Model.mp4 31.82MB
11. Backward Elimination or How to Simplify Your Model.vtt 5.37KB
11. Bank-data.csv 19.55KB
11. Bayes' Law.mp4 21.35MB
11. Bayes' Law.vtt 7.70KB
11. Binary Predictors in a Logistic Regression - Exercise.html 87B
11. Binary-Predictors-in-a-Logistic-Regression-Exercise.ipynb 2.54KB
11. Binary-Predictors-in-a-Logistic-Regression-Solution.ipynb 4.51KB
11. Business Case A Comment on the Homework.mp4 20.58MB
11. Business Case A Comment on the Homework.vtt 5.38KB
11. Business Case Testing the Model.mp4 8.19MB
11. Business Case Testing the Model.vtt 2.14KB
11. Confidence intervals. Two means. Independent Samples (Part 1).mp4 11.99MB
11. Confidence intervals. Two means. Independent Samples (Part 1).vtt 6.28KB
11. Continuous Distributions The Students' T Distribution.mp4 9.24MB
11. Continuous Distributions The Students' T Distribution.vtt 3.22KB
11. Data Selection in pandas DataFrames.mp4 37.28MB
11. Data Selection in pandas DataFrames.vtt 10.51KB
11. Dealing with Categorical Data - Dummy Variables.mp4 22.65MB
11. Dealing with Categorical Data - Dummy Variables.vtt 9.55KB
11. Dummy-Variables.ipynb 4.62KB
11. Dummy-variables-with-comments.ipynb 7.09KB
11. Evolution and Latest Trends of Machine Learning (ML).mp4 27.32MB
11. Evolution and Latest Trends of Machine Learning (ML).vtt 7.76KB
11. GD-function-example.xlsx 42.33KB
11. Machine Learning with Naïve Bayes – converting the problem to a binary one.mp4 18.89MB
11. Machine Learning with Naïve Bayes – converting the problem to a binary one.vtt 6.71KB
11. Market-segmentation-example.ipynb 3.80KB
11. Market-segmentation-example-with-comments.ipynb 5.90KB
11. Market Segmentation with Cluster Analysis (Part 1).mp4 28.04MB
11. Market Segmentation with Cluster Analysis (Part 1).vtt 7.53KB
11. Mean, median and mode.mp4 24.50MB
11. Mean, median and mode.vtt 5.98KB
11. MNIST - Exercises.html 1.98KB
11. MNIST Solutions.html 2.22KB
11. Obtaining Dummies from a Single Feature.mp4 69.75MB
11. Obtaining Dummies from a Single Feature.vtt 10.58KB
11. Optimization Algorithm 1-Parameter Gradient Descent.mp4 23.57MB
11. Optimization Algorithm 1-Parameter Gradient Descent.vtt 8.80KB
11. R-Squared.mp4 11.20MB
11. R-Squared.vtt 6.80KB
11. sklearn-How-to-properly-include-p-values.ipynb 12.71KB
11. TensorFlow-Audiobooks-Machine-learning-Homework.ipynb 14.40KB
11. TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb 11.95KB
11. TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb 11.19KB
11. TensorFlow-MNIST-All-Exercises.ipynb 16.65KB
11. TensorFlow-MNIST-around-98-percent-accuracy.ipynb 15.02KB
11. TensorFlow-MNIST-around-98-percent-accuracy.ipynb 17.66KB
11. Test for the Mean. Dependent Samples Exercise.html 81B
11. Why is Linear Algebra Useful.mp4 88.47MB
11. Why is Linear Algebra Useful.vtt 11.53KB
12. 1.02.Multiple-linear-regression.csv 1.07KB
12. 2.7.Mean-median-and-mode-exercise.xlsx 10.87KB
12. 2.7.Mean-median-and-mode-exercise-solution.xlsx 11.35KB
12. 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise.xlsx 9.83KB
12. 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise-solution.xlsx 10.12KB
12. 365-User-Reviews-Naive-Bayes-Sentiment-Analysis.ipynb 1.71MB
12. 4.8.Test-for-the-mean.Independent-samples-Part-1-lesson.xlsx 9.63KB
12. Accuracy.ipynb 3.63KB
12. Accuracy-with-comments.ipynb 11.67KB
12. A Practical Example of Bayesian Inference.mp4 139.24MB
12. A Practical Example of Bayesian Inference.vtt 20.11KB
12. Audiobooks-data.csv 710.77KB
12. Bayesian-Homework.pdf 27.26KB
12. Bayesian-Homework-Solutions.pdf 30.35KB
12. Business Case Final Exercise.html 433B
12. Business Case Final Exercise.html 443B
12. Calculating the Accuracy of the Model.mp4 20.26MB
12. Calculating the Accuracy of the Model.vtt 4.29KB
12. CDS-2017-2018-Hamilton.pdf 845.31KB
12. Confidence intervals. Two means. Independent Samples (Part 1). Exercise.html 81B
12. Continuous Distributions The Chi-Squared Distribution.mp4 11.16MB
12. Continuous Distributions The Chi-Squared Distribution.vtt 2.98KB
12. Creating a Summary Table with P-values.mp4 6.45MB
12. Creating a Summary Table with P-values.vtt 3.05KB
12. Dealing with Categorical Data - Dummy Variables.html 76B
12. EXERCISE - Obtaining Dummies from a Single Feature.html 129B
12. Hypothesis testing with ChatGPT.mp4 14.37MB
12. Hypothesis testing with ChatGPT.vtt 5.65KB
12. Market-segmentation-example-Part2.ipynb 4.68KB
12. Market-segmentation-example-Part2-with-comments.ipynb 6.81KB
12. Market Segmentation with Cluster Analysis (Part 2).mp4 34.08MB
12. Market Segmentation with Cluster Analysis (Part 2).vtt 9.13KB
12. Mean, Median and Mode Exercise.html 81B
12. MNIST Testing the Model.mp4 22.61MB
12. MNIST Testing the Model.vtt 5.96KB
12. Multiple-Linear-Regression-with-Dummies-Exercise.ipynb 3.01KB
12. Multiple-Linear-Regression-with-Dummies-Exercise-Solution.ipynb 18.00KB
12. Optimization Algorithm n-Parameter Gradient Descent.mp4 16.83MB
12. Optimization Algorithm n-Parameter Gradient Descent.vtt 7.79KB
12. pandas DataFrames - Indexing with .iloc[].mp4 32.21MB
12. pandas DataFrames - Indexing with .iloc[].vtt 8.34KB
12. real-estate-price-size-year-view.csv 3.39KB
12. Real Life Examples of Machine Learning (ML).mp4 27.74MB
12. Real Life Examples of Machine Learning (ML).vtt 3.03KB
12. sklearn-Multiple-Linear-Regression-Summary-Table.ipynb 13.71KB
12. sklearn-Multiple-Linear-Regression-Summary-Table-with-comments.ipynb 16.63KB
12. students.csv 2.08KB
12. Students-Hypothesis-Testing.ipynb 5.60KB
12. TensorFlow-Audiobooks-Machine-learning-Homework.ipynb 14.40KB
12. TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb 11.95KB
12. TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb 11.19KB
12. TensorFlow-MNIST-complete.ipynb 6.78KB
12. TensorFlow-MNIST-complete-with-comments.ipynb 14.51KB
12. Test for the mean. Independent Samples (Part 1).mp4 15.42MB
12. Test for the mean. Independent Samples (Part 1).vtt 5.47KB
12. Testing the Model on New Data.mp4 20.83MB
12. Testing the Model on New Data.vtt 6.93KB
12. Testing the Model We Created.mp4 31.60MB
12. Testing the Model We Created.vtt 6.53KB
12. user-courses-review-test-set.csv 19.63KB
13. 2.8.Skewness-lesson.xlsx 34.63KB
13. 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-lesson.xlsx 9.52KB
13. 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise.xlsx 10.77KB
13. 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise-solution.xlsx 11.25KB
13. Bank-data.csv 19.55KB
13. Calculating the Accuracy of the Model.html 87B
13. Calculating-the-Accuracy-of-the-Model-Exercise.ipynb 5.39KB
13. Calculating-the-Accuracy-of-the-Model-Solution.ipynb 81.21KB
13. Confidence intervals. Two means. Independent Samples (Part 2).mp4 14.62MB
13. Confidence intervals. Two means. Independent Samples (Part 2).vtt 4.69KB
13. Continuous Distributions The Exponential Distribution.mp4 15.99MB
13. Continuous Distributions The Exponential Distribution.vtt 4.47KB
13. How is Clustering Useful.mp4 37.43MB
13. How is Clustering Useful.vtt 6.78KB
13. Lending-company.csv 112.43KB
13. Location.csv 13.49KB
13. Making-predictions.ipynb 5.77KB
13. Making-predictions-with-comments.ipynb 9.41KB
13. Making Predictions with the Linear Regression.mp4 16.34MB
13. Making Predictions with the Linear Regression.vtt 4.44KB
13. Marvels comic book database Intro to Regular Expressions (RegEx).mp4 14.98MB
13. Marvels comic book database Intro to Regular Expressions (RegEx).vtt 2.72KB
13. Multiple Linear Regression - Exercise.html 76B
13. pandas DataFrames - Indexing with .loc[].mp4 20.69MB
13. pandas DataFrames - Indexing with .loc[].vtt 5.56KB
13. pandas-Fundamentals-Exercises.ipynb 30.96KB
13. pandas-Fundamentals-Lectures.ipynb 21.31KB
13. pandas-Fundamentals-Solutions.ipynb 118.35KB
13. real-estate-price-size-year.csv 2.35KB
13. Region.csv 10.22KB
13. Sales-products.csv 152.28KB
13. Saving the Model and Preparing it for Deployment.mp4 25.52MB
13. Saving the Model and Preparing it for Deployment.vtt 5.76KB
13. Skewness.mp4 13.32MB
13. Skewness.vtt 3.73KB
13. sklearn-Multiple-Linear-Regression-Exercise.ipynb 5.67KB
13. sklearn-Multiple-Linear-Regression-Exercise-Solution.ipynb 15.44KB
13. SOLUTION - Obtaining Dummies from a Single Feature.html 117B
13. Test for the mean. Independent Samples (Part 1). Exercise.html 81B
14. 1.02.Multiple-linear-regression.csv 1.07KB
14. 2.8.Skewness-exercise.xlsx 9.49KB
14. 2.8.Skewness-exercise-solution.xlsx 19.78KB
14. 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise.xlsx 9.17KB
14. 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise-solution.xlsx 9.79KB
14. 4.9.Test-for-the-mean.Independent-samples-Part-2-lesson.xlsx 9.31KB
14. ARTICLE - A Note on 'pickling'.html 2.14KB
14. Confidence intervals. Two means. Independent Samples (Part 2). Exercise.html 81B
14. Continuous Distributions The Logistic Distribution.mp4 16.18MB
14. Continuous Distributions The Logistic Distribution.vtt 5.41KB
14. Decoding comic book data Python Regular Expressions and ChatGPT.mp4 33.05MB
14. Decoding comic book data Python Regular Expressions and ChatGPT.vtt 6.45KB
14. Dropping a Dummy Variable from the Data Set.html 2.34KB
14. EXERCISE Species Segmentation with Cluster Analysis (Part 1).html 87B
14. Feature Scaling (Standardization).mp4 20.37MB
14. Feature Scaling (Standardization).vtt 8.78KB
14. iris-dataset.csv 2.40KB
14. Marvel-Comics-Reg-Ex.ipynb 29.49KB
14. Skewness Exercise.html 81B
14. SKLEAR-1.IPY 12.87KB
14. sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-1.ipynb 11.73KB
14. Species-Segmentation-with-Cluster-Analysis-Part-1-Exercise.ipynb 4.46KB
14. Species-Segmentation-with-Cluster-Analysis-Part-1-Solution.ipynb 7.35KB
14. Test for the mean. Independent Samples (Part 2).mp4 24.45MB
14. Test for the mean. Independent Samples (Part 2).vtt 5.39KB
14. Underfitting and Overfitting.mp4 7.49MB
14. Underfitting and Overfitting.vtt 5.16KB
15. 1.02.Multiple-linear-regression.csv 1.07KB
15. 2.03.Test-dataset.csv 322B
15. 2.9.Variance-lesson.xlsx 10.08KB
15. 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2.xlsx 10.54KB
15. 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2-solution.xlsx 11.39KB
15. A Practical Example of Probability Distributions.mp4 138.31MB
15. A Practical Example of Probability Distributions.vtt 21.13KB
15. Assignment 2.html 1.56KB
15. Confidence intervals. Two means. Independent Samples (Part 3).mp4 6.88MB
15. Confidence intervals. Two means. Independent Samples (Part 3).vtt 2.03KB
15. Customers-Membership.xlsx 9.69KB
15. Customers-Membership-post.xlsx 15.62KB
15. Daily-Views.xlsx 9.53KB
15. Daily-Views-post.xlsx 20.21KB
15. EXERCISE - Saving the Model (and Scaler).html 284B
15. EXERCISE Species Segmentation with Cluster Analysis (Part 2).html 87B
15. Feature Selection through Standardization of Weights.mp4 24.46MB
15. Feature Selection through Standardization of Weights.vtt 7.62KB
15. FIFA19.csv 8.64MB
15. FIFA19-post.csv 8.64MB
15. iris-dataset.csv 2.40KB
15. iris-with-answers.csv 3.63KB
15. More on Dummy Variables A Statistical Perspective.mp4 5.82MB
15. More on Dummy Variables A Statistical Perspective.vtt 1.71KB
15. SKLEAR-1.IPY 16.79KB
15. sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-2.ipynb 14.89KB
15. Species-Segmentation-with-Cluster-Analysis-Part-2-Exercise.ipynb 10.74KB
15. Species-Segmentation-with-Cluster-Analysis-Part-2-Solution.ipynb 15.30KB
15. Test for the mean. Independent Samples (Part 2). Exercise.html 81B
15. Testing-the-model.ipynb 5.77KB
15. Testing the Model.mp4 21.59MB
15. Testing the Model.vtt 6.54KB
15. Testing-the-model-with-comments.ipynb 7.56KB
15. Variance.mp4 23.55MB
15. Variance.vtt 8.19KB
16. 1.02.Multiple-linear-regression.csv 1.07KB
16. 2.9.Variance-exercise.xlsx 10.83KB
16. 2.9.Variance-exercise-solution.xlsx 11.05KB
16. Algorithm recommendation Movie Database Analysis with ChatGPT.mp4 17.25MB
16. Algorithm recommendation Movie Database Analysis with ChatGPT.vtt 4.36KB
16. Bank-data.csv 19.55KB
16. Bank-data-testing.csv 8.30KB
16. Classifying the Various Reasons for Absence.mp4 51.32MB
16. Classifying the Various Reasons for Absence.vtt 10.52KB
16. Predicting with the Standardized Coefficients.mp4 20.44MB
16. Predicting with the Standardized Coefficients.vtt 5.55KB
16. Preparing the Deployment of the Model through a Module.mp4 28.56MB
16. Preparing the Deployment of the Model through a Module.vtt 5.90KB
16. ratings-small.csv 2.33MB
16. sklearn-Making-Predictions-with-the-Standardized-Coefficients.ipynb 29.75KB
16. sklearn-Making-Predictions-with-the-Standardized-Coefficients-with-comments.ipynb 22.03KB
16. Testing the Model - Exercise.html 87B
16. Testing-the-Model-Exercise.ipynb 6.79KB
16. Testing-the-Model-Solution.ipynb 111.10KB
16. Variance Exercise.html 522B
17. 2.10.Standard-deviation-and-coefficient-of-variation-lesson.xlsx 10.97KB
17. Algorithm recommendation recommendation engine for movies with ChatGPT.mp4 17.85MB
17. Algorithm recommendation recommendation engine for movies with ChatGPT.vtt 6.36KB
17. Feature Scaling (Standardization) - Exercise.html 76B
17. Movies-Data-Base-Recommendation-Engine.ipynb 20.39KB
17. real-estate-price-size-year.csv 2.35KB
17. sklearn-Feature-Scaling-Exercise.ipynb 6.07KB
17. sklearn-Feature-Scaling-Exercise-Solution.ipynb 16.28KB
17. Standard Deviation and Coefficient of Variation.mp4 20.12MB
17. Standard Deviation and Coefficient of Variation.vtt 6.35KB
17. Using .concat() in Python.mp4 27.34MB
17. Using .concat() in Python.vtt 5.17KB
18. 2.10.Standard-deviation-and-coefficient-of-variation-exercise.xlsx 11.61KB
18. 2.10.Standard-deviation-and-coefficient-of-variation-exercise-solution.xlsx 12.60KB
18. Ethical principles in data and AI utilization.mp4 14.73MB
18. Ethical principles in data and AI utilization.vtt 4.36KB
18. EXERCISE - Using .concat() in Python.html 189B
18. Standard Deviation and Coefficient of Variation Exercise.html 81B
18. Underfitting and Overfitting.mp4 5.83MB
18. Underfitting and Overfitting.vtt 3.75KB
19. 2.11.Covariance-lesson.xlsx 24.92KB
19. Covariance.mp4 18.37MB
19. Covariance.vtt 5.11KB
19. friendships.csv 6.00KB
19. interactions.csv 73.25KB
19. posts.csv 30.79KB
19. sklearn-Train-Test-Split.ipynb 7.23KB
19. sklearn-Train-Test-Split-with-comments.ipynb 9.05KB
19. SOLUTION - Using .concat() in Python.html 143B
19. Train - Test Split Explained.mp4 35.57MB
19. Train - Test Split Explained.vtt 9.71KB
19. users.csv 3.49KB
19. Using ChatGPT for ethical considerations.mp4 33.53MB
19. Using ChatGPT for ethical considerations.vtt 7.47KB
20. 2.11.Covariance-exercise.xlsx 20.23KB
20. 2.11.Covariance-exercise-solution.xlsx 29.51KB
20. Covariance Exercise.html 81B
20. Reordering Columns in a Pandas DataFrame in Python.mp4 10.00MB
20. Reordering Columns in a Pandas DataFrame in Python.vtt 1.87KB
21. Correlation Coefficient.mp4 19.32MB
21. Correlation Coefficient.vtt 4.96KB
21. EXERCISE - Reordering Columns in a Pandas DataFrame in Python.html 167B
22. 2.12.Correlation-exercise.xlsx 29.30KB
22. 2.12.Correlation-exercise-solution.xlsx 29.48KB
22. Correlation Coefficient Exercise.html 81B
22. SOLUTION - Reordering Columns in a Pandas DataFrame in Python.html 478B
23. Absenteeism-Exercise-Preprocessing-df-reason-mod.ipynb 4.82KB
23. Creating Checkpoints while Coding in Jupyter.mp4 17.33MB
23. Creating Checkpoints while Coding in Jupyter.vtt 3.67KB
24. EXERCISE - Creating Checkpoints while Coding in Jupyter.html 137B
25. SOLUTION - Creating Checkpoints while Coding in Jupyter.html 118B
26. Analyzing the Dates from the Initial Data Set.mp4 40.12MB
26. Analyzing the Dates from the Initial Data Set.vtt 8.87KB
27. Extracting the Month Value from the Date Column.mp4 33.90MB
27. Extracting the Month Value from the Date Column.vtt 7.99KB
28. Extracting the Day of the Week from the Date Column.mp4 19.14MB
28. Extracting the Day of the Week from the Date Column.vtt 4.78KB
29. Absenteeism-Exercise-Preprocessing-ChP-df-date-reason-mod.ipynb 7.33KB
29. Absenteeism-Exercise-Preprocessing-LECTURES.ipynb 7.60MB
29. Absenteeism-Exercise-Removing-the-Date-Column-SOLUTION.ipynb 8.33KB
29. EXERCISE - Removing the Date Column.html 1.21KB
30. Analyzing Several Straightforward Columns for this Exercise.mp4 14.32MB
30. Analyzing Several Straightforward Columns for this Exercise.vtt 4.59KB
31. Working on Education, Children, and Pets.mp4 27.03MB
31. Working on Education, Children, and Pets.vtt 5.96KB
32. Absenteeism-Exercise-EXERCISES-and-SOLUTIONS.ipynb 4.13KB
32. Absenteeism-Exercise-Preprocessing-df-preprocessed.ipynb 8.51KB
32. Final Remarks of this Section.mp4 13.54MB
32. Final Remarks of this Section.vtt 2.68KB
33. A Note on Exporting Your Data as a .csv File.html 883B
Marvel_Comics.csv 12.99MB
movies_metadata.csv 32.85MB