Torrent Info
Title [LinkedIn Learning] Getting Started with AI and Machine Learning - Complete 7 Courses
Category
Size 1.76GB

Files List
Please note that this page does not hosts or makes available any of the listed filenames. You cannot download any of those files from here.
$10 ChatGPT for 1 Year & More.txt 252B
1. Average grayscale.mp4 10.88MB
1. Average grayscale.srt 5.04KB
1. Big data.mp4 12.70MB
1. Big data.srt 7.63KB
1. Computer vision under the hood.mp4 7.37MB
1. Computer vision under the hood.srt 2.10KB
1. Continuing your PyTorch learning process.mp4 1.73MB
1. Continuing your PyTorch learning process.srt 1.86KB
1. Convolutional neural networks (CNN).mp4 15.58MB
1. Convolutional neural networks (CNN).srt 12.21KB
1. Convolution filters.mp4 8.48MB
1. Convolution filters.srt 6.30KB
1. Deep reinforcement learning.mp4 4.29MB
1. Deep reinforcement learning.srt 2.20KB
1. Define general intelligence.mp4 11.92MB
1. Define general intelligence.srt 8.39KB
1. Defining linear algebra.mp4 11.17MB
1. Defining linear algebra.srt 3.46KB
1. Dot product of vectors.mp4 12.40MB
1. Dot product of vectors.srt 4.44KB
1. Exercise problem statement.mp4 5.84MB
1. Exercise problem statement.srt 3.85KB
1. Explore the capabilities of PyTorch.mp4 2.54MB
1. Explore the capabilities of PyTorch.srt 1.36KB
1. Extending your deep learning education.mp4 1.54MB
1. Extending your deep learning education.srt 1.04KB
1. Generative AI.mp4 11.67MB
1. Generative AI.srt 5.75KB
1. Getting started with deep learning.mp4 3.96MB
1. Getting started with deep learning.srt 1.50KB
1. Image cuts.mp4 13.72MB
1. Image cuts.srt 5.79KB
1. Image downscaling methods.mp4 4.20MB
1. Image downscaling methods.srt 3.25KB
1. Image representation.mp4 12.07MB
1. Image representation.srt 5.79KB
1. Installing Anaconda and OpenCV.mp4 1.95MB
1. Installing Anaconda and OpenCV.srt 1.67KB
1. Introduction.mp4 8.62MB
1. Introduction.srt 1.52KB
1. Introduction to eigenvalues and eigenvectors.mp4 10.39MB
1. Introduction to eigenvalues and eigenvectors.srt 3.98KB
1. Introduction to vectors.mp4 29.95MB
1. Introduction to vectors.srt 6.86KB
1. Machine learning.mp4 13.77MB
1. Machine learning.srt 8.28KB
1. Machine learning and neural networks.mp4 8.82MB
1. Machine learning and neural networks.srt 6.02KB
1. Match patterns.mp4 15.58MB
1. Match patterns.srt 8.12KB
1. Matrices changing basis.mp4 7.39MB
1. Matrices changing basis.srt 3.25KB
1. Matrices introduction.mp4 8.38MB
1. Matrices introduction.srt 3.85KB
1. Monte Carlo method.mp4 12.18MB
1. Monte Carlo method.srt 4.75KB
1. Multilayer perceptron.mp4 6.74MB
1. Multilayer perceptron.srt 5.85KB
1. Neural networks 101 Your path to AI brilliance.mp4 4.40MB
1. Neural networks 101 Your path to AI brilliance.srt 1.26KB
1. Next steps.mp4 1.82MB
1. Next steps.mp4 2.51MB
1. Next steps.mp4 2.60MB
1. Next steps.mp4 4.25MB
1. Next steps.srt 1.15KB
1. Next steps.srt 1.18KB
1. Next steps.srt 1.77KB
1. Next steps.srt 2.60KB
1. Overfitting and underfitting Two common ANN problems.mp4 6.89MB
1. Overfitting and underfitting Two common ANN problems.srt 7.36KB
1. Pitfalls.mp4 12.31MB
1. Pitfalls.srt 8.22KB
1. PyTorch overview.mp4 7.73MB
1. PyTorch overview.srt 5.76KB
1. Reinforcement learning in a nutshell.mp4 3.67MB
1. Reinforcement learning in a nutshell.srt 1.47KB
1. Robotics.mp4 14.21MB
1. Robotics.srt 8.08KB
1. Setup and initialization.mp4 5.75MB
1. Setup and initialization.srt 4.83KB
1. Solving linear equations using Gaussian elimination.mp4 17.05MB
1. Solving linear equations using Gaussian elimination.srt 6.07KB
1. Spam classification problem.mp4 3.72MB
1. Spam classification problem.srt 2.84KB
1. Terms in reinforcement learning.mp4 10.22MB
1. Terms in reinforcement learning.srt 3.68KB
1. The input layer.mp4 5.88MB
1. The input layer.srt 4.62KB
1. The Iris classification problem.mp4 4.71MB
1. The Iris classification problem.srt 2.20KB
1. The Keras Sequential model.mp4 6.52MB
1. The Keras Sequential model.srt 5.90KB
1. The setting.mp4 3.22MB
1. The setting.mp4 5.19MB
1. The setting.srt 1.82KB
1. The setting.srt 2.10KB
1. Torchaudio introduction.mp4 6.57MB
1. Torchaudio introduction.srt 4.81KB
1. Torchtext introduction.mp4 7.87MB
1. Torchtext introduction.srt 5.01KB
1. Torchvision introduction.mp4 13.69MB
1. Torchvision introduction.srt 12.03KB
1. Understand PyTorch tensors.mp4 7.04MB
1. Understand PyTorch tensors.srt 4.99KB
1. Welcome.mp4 7.06MB
1. Welcome.srt 3.31KB
1. What is deep learning.mp4 2.65MB
1. What is deep learning.srt 2.74KB
1. Why modify objects.mp4 13.84MB
1. Why modify objects.srt 7.43KB
1. Your reinforcement learning journey.mp4 6.16MB
1. Your reinforcement learning journey.srt 2.80KB
10. Using available open-source models.mp4 4.31MB
10. Using available open-source models.srt 3.66KB
2. A basic RL problem.mp4 15.11MB
2. A basic RL problem.srt 6.68KB
2. Applications of linear algebra in ML.mp4 22.84MB
2. Applications of linear algebra in ML.srt 7.65KB
2. Artificial neural networks.mp4 13.08MB
2. Artificial neural networks.srt 7.86KB
2. Average filters.mp4 11.36MB
2. Average filters.srt 4.18KB
2. Biological neural networks.mp4 5.04MB
2. Biological neural networks.srt 3.47KB
2. Calculating eigenvalues and eigenvectors.mp4 11.50MB
2. Calculating eigenvalues and eigenvectors.srt 4.38KB
2. Color encoding.mp4 7.92MB
2. Color encoding.srt 4.23KB
2. Creating text representations.mp4 7.14MB
2. Creating text representations.srt 3.00KB
2. Data science.mp4 13.06MB
2. Data science.srt 8.02KB
2. Data vs. reasoning.mp4 11.39MB
2. Data vs. reasoning.srt 8.06KB
2. Downscaling example.mp4 11.39MB
2. Downscaling example.srt 4.63KB
2. Erosion and dilation.mp4 11.42MB
2. Erosion and dilation.srt 5.30KB
2. Exploration and exploitation.mp4 7.71MB
2. Exploration and exploitation.srt 3.51KB
2. Forward propagation.mp4 2.81MB
2. Forward propagation.srt 2.13KB
2. Foundation models.mp4 12.60MB
2. Foundation models.srt 5.54KB
2. Gaussian elimination and finding the inverse matrix.mp4 9.73MB
2. Gaussian elimination and finding the inverse matrix.srt 4.40KB
2. Hidden layers.mp4 4.63MB
2. Hidden layers.srt 2.82KB
2. Hyperparameters and neural networks.mp4 5.98MB
2. Hyperparameters and neural networks.srt 4.46KB
2. Input preprocessing.mp4 9.40MB
2. Input preprocessing.srt 4.18KB
2. Layers Input, hidden, and output.mp4 4.54MB
2. Layers Input, hidden, and output.srt 4.00KB
2. Linear regression.mp4 5.56MB
2. Linear regression.srt 4.15KB
2. Multi-agent reinforcement learning.mp4 1.77MB
2. Multi-agent reinforcement learning.srt 1.68KB
2. Natural language processing.mp4 14.47MB
2. Natural language processing.srt 8.17KB
2. Preprocessing RCA data.mp4 4.02MB
2. Preprocessing RCA data.srt 1.50KB
2. Prerequisites for the course.mp4 4.86MB
2. Prerequisites for the course.srt 4.14KB
2. PyTorch environment setup.mp4 13.03MB
2. PyTorch environment setup.srt 5.48KB
2. Recurrent neural networks (RNN).mp4 12.80MB
2. Recurrent neural networks (RNN).srt 9.82KB
2. SARSA.mp4 15.19MB
2. SARSA.srt 6.81KB
2. Scalar and vector projection.mp4 13.76MB
2. Scalar and vector projection.srt 4.85KB
2. Stitching two images together.mp4 44.15MB
2. Stitching two images together.srt 9.87KB
2. Temporal difference methods.mp4 2.31MB
2. Temporal difference methods.srt 1.80KB
2. Testing your environment.mp4 10.56MB
2. Testing your environment.srt 5.49KB
2. The history of AI.mp4 10.40MB
2. The history of AI.srt 7.87KB
2. Torchaudio for audio understanding.mp4 13.23MB
2. Torchaudio for audio understanding.srt 5.36KB
2. Torchtext for translation.mp4 14.33MB
2. Torchtext for translation.srt 5.48KB
2. Torchvision for video and image understanding.mp4 4.46MB
2. Torchvision for video and image understanding.srt 1.90KB
2. Transforming to the new basis.mp4 14.42MB
2. Transforming to the new basis.srt 3.63KB
2. Types of matrices.mp4 9.62MB
2. Types of matrices.srt 4.26KB
2. Understand PyTorch basic operations.mp4 7.49MB
2. Understand PyTorch basic operations.srt 3.81KB
2. Use case and determine evaluation metric.mp4 9.85MB
2. Use case and determine evaluation metric.srt 7.23KB
2. Vector arithmetic.mp4 12.40MB
2. Vector arithmetic.srt 5.52KB
2. Weighted grayscale.mp4 6.22MB
2. Weighted grayscale.srt 1.92KB
2. What you should know.mp4 1.60MB
2. What you should know.mp4 2.73MB
2. What you should know.mp4 5.35MB
2. What you should know.srt 908B
2. What you should know.srt 1.63KB
2. What you should know.srt 2.13KB
3. An analogy for deep learning.mp4 4.49MB
3. An analogy for deep learning.srt 4.44KB
3. Artificial neural networks.mp4 2.86MB
3. Artificial neural networks.srt 2.48KB
3. Building a spam model.mp4 5.24MB
3. Building a spam model.srt 1.98KB
3. Building the RCA model.mp4 3.62MB
3. Building the RCA model.srt 1.21KB
3. Changing basis of vectors.mp4 17.13MB
3. Changing basis of vectors.srt 6.43KB
3. Changing to the eigenbasis.mp4 13.17MB
3. Changing to the eigenbasis.srt 5.67KB
3. Converting grayscale to black and white.mp4 10.45MB
3. Converting grayscale to black and white.srt 4.11KB
3. Coordinate system.mp4 9.79MB
3. Coordinate system.srt 4.20KB
3. Creating a deep learning model.mp4 8.10MB
3. Creating a deep learning model.srt 4.00KB
3. Cuts in panoramic photography.mp4 12.47MB
3. Cuts in panoramic photography.srt 4.75KB
3. Data checks and data preparation.mp4 4.71MB
3. Data checks and data preparation.srt 3.71KB
3. How do you improve model performance.mp4 6.24MB
3. How do you improve model performance.srt 5.70KB
3. How to use the challenge exercise files.mp4 3.72MB
3. How to use the challenge exercise files.srt 2.08KB
3. Image file management.mp4 19.14MB
3. Image file management.srt 8.38KB
3. Image upscaling methods.mp4 3.49MB
3. Image upscaling methods.srt 2.76KB
3. Inverse and determinant.mp4 8.39MB
3. Inverse and determinant.srt 3.94KB
3. Inverse reinforcement learning.mp4 2.22MB
3. Inverse reinforcement learning.srt 1.76KB
3. Markov decision process.mp4 17.38MB
3. Markov decision process.srt 6.97KB
3. Measuring accuracy and error.mp4 4.73MB
3. Measuring accuracy and error.srt 3.76KB
3. Median filters.mp4 25.41MB
3. Median filters.srt 6.87KB
3. Monte Carlo prediction.mp4 2.42MB
3. Monte Carlo prediction.srt 2.67KB
3. Open and close.mp4 7.14MB
3. Open and close.srt 2.77KB
3. Orthogonal matrix.mp4 6.55MB
3. Orthogonal matrix.srt 3.22KB
3. Other RL algorithms.mp4 3.15MB
3. Other RL algorithms.srt 916B
3. Perceptrons.mp4 14.13MB
3. Perceptrons.srt 8.49KB
3. PyTorch use case description.mp4 3.58MB
3. PyTorch use case description.srt 3.59KB
3. SARSAMAX (Q-learning).mp4 9.14MB
3. SARSAMAX (Q-learning).srt 3.23KB
3. Self-supervised learning.mp4 11.42MB
3. Self-supervised learning.srt 5.21KB
3. Setting up the environment.mp4 5.99MB
3. Setting up the environment.srt 3.63KB
3. Strong vs. weak AI.mp4 12.99MB
3. Strong vs. weak AI.srt 8.26KB
3. The Internet of Things.mp4 11.72MB
3. The Internet of Things.srt 6.93KB
3. Transfer and activation functions.mp4 5.72MB
3. Transfer and activation functions.srt 4.96KB
3. Transformer architecture.mp4 7.79MB
3. Transformer architecture.srt 5.58KB
3. Types of matrix transformation.mp4 8.87MB
3. Types of matrix transformation.srt 4.33KB
3. Understand PyTorch NumPy Bridge.mp4 8.10MB
3. Understand PyTorch NumPy Bridge.srt 4.84KB
3. Unsupervised learning.mp4 13.63MB
3. Unsupervised learning.srt 8.09KB
3. Using the exercise files.mp4 1.78MB
3. Using the exercise files.srt 1.41KB
3. Weights and biases.mp4 5.61MB
3. Weights and biases.srt 4.24KB
4. A basic RL solution.mp4 8.59MB
4. A basic RL solution.srt 3.54KB
4. Activation functions.mp4 3.91MB
4. Activation functions.srt 3.53KB
4. Adaptive thresholding.mp4 20.95MB
4. Adaptive thresholding.srt 7.17KB
4. Backpropagation.mp4 12.96MB
4. Back propagation.mp4 4.79MB
4. Backpropagation.srt 7.58KB
4. Back propagation.srt 3.85KB
4. Basis, linear independence, and span.mp4 12.04MB
4. Basis, linear independence, and span.srt 3.98KB
4. Challenge Help a robot.mp4 9.03MB
4. Challenge Help a robot.srt 3.46KB
4. Challenge Stitch two pictures together.mp4 3.61MB
4. Challenge Stitch two pictures together.srt 1.74KB
4. Composition or combination of matrix transformations.mp4 11.76MB
4. Composition or combination of matrix transformations.srt 4.27KB
4. Data preprocessing.mp4 3.67MB
4. Data preprocessing.srt 2.80KB
4. Expected SARSA.mp4 7.06MB
4. Expected SARSA.srt 2.53KB
4. First visit and every visit MC prediction.mp4 6.82MB
4. First visit and every visit MC prediction.srt 2.71KB
4. Gaussian filters.mp4 8.20MB
4. Gaussian filters.srt 2.89KB
4. Google PageRank algorithm.mp4 12.42MB
4. Google PageRank algorithm.srt 5.99KB
4. Gram–Schmidt process.mp4 11.08MB
4. Gram–Schmidt process.srt 3.96KB
4. How neural networks learn.mp4 8.91MB
4. How neural networks learn.srt 6.84KB
4. Plan AI.mp4 13.88MB
4. Plan AI.srt 8.39KB
4. Predicting root causes with deep learning.mp4 2.68MB
4. Predicting root causes with deep learning.srt 1.47KB
4. Predictions for text.mp4 4.10MB
4. Predictions for text.srt 2.23KB
4. PyTorch data exploration.mp4 12.13MB
4. PyTorch data exploration.srt 5.45KB
4. Regularization techniques to improve overfitting models.mp4 11.83MB
4. Regularization techniques to improve overfitting models.srt 11.31KB
4. Resolution.mp4 8.77MB
4. Resolution.srt 4.49KB
4. Single-layer perceptron.mp4 6.41MB
4. Single-layer perceptron.srt 5.28KB
4. The perceptron.mp4 2.60MB
4. The perceptron.srt 2.60KB
4. Training and evaluation.mp4 9.43MB
4. Training and evaluation.srt 4.29KB
4. Understand PyTorch autograd.mp4 5.42MB
4. Understand PyTorch autograd.srt 4.12KB
4. Upscaling example.mp4 11.66MB
4. Upscaling example.srt 4.96KB
5. Advanced PyTorch autograd.mp4 5.01MB
5. Advanced PyTorch autograd.srt 3.10KB
5. Artificial neural networks.mp4 5.78MB
5. Artificial neural networks.srt 4.28KB
5. Challenge Manually tune hyperparameters.mp4 1.12MB
5. Challenge Manually tune hyperparameters.srt 1.08KB
5. Challenge Removing color.mp4 2.89MB
5. Challenge Removing color.srt 1.37KB
5. Challenge Resize a picture.mp4 2.94MB
5. Challenge Resize a picture.srt 1.36KB
5. Edge detection filters.mp4 14.19MB
5. Edge detection filters.srt 5.98KB
5. Gradient descent.mp4 3.03MB
5. Gradient descent.srt 2.38KB
5. Monte Carlo control.mp4 1.41MB
5. Monte Carlo control.srt 1.40KB
5. Regression.mp4 13.54MB
5. Regression.srt 8.93KB
5. Rotations and flips.mp4 6.14MB
5. Rotations and flips.srt 2.87KB
5. Saving and loading models.mp4 3.05MB
5. Saving and loading models.srt 1.94KB
5. Solution Help a robot.mp4 7.91MB
5. Solution Help a robot.srt 1.98KB
5. Solution Stitch two pictures together.mp4 6.43MB
5. Solution Stitch two pictures together.srt 1.88KB
5. The output layer.mp4 3.40MB
5. The output layer.srt 2.75KB
5. Train the neural network using Keras.mp4 10.33MB
5. Train the neural network using Keras.srt 8.37KB
6. Additional modifications.mp4 4.54MB
6. Additional modifications.srt 4.17KB
6. Batches and epochs.mp4 4.80MB
6. Batches and epochs.srt 3.90KB
6. Challenge Build a neural network.mp4 1.27MB
6. Challenge Build a neural network.srt 1.18KB
6. Challenge Convolution filters.mp4 4.76MB
6. Challenge Convolution filters.srt 1.94KB
6. Challenge Manipulate some pictures.mp4 7.25MB
6. Challenge Manipulate some pictures.srt 3.66KB
6. Predictions with deep learning models.mp4 4.59MB
6. Predictions with deep learning models.srt 2.41KB
6. Solution Manually tune hyperparameters.mp4 6.08MB
6. Solution Manually tune hyperparameters.srt 2.47KB
6. Solution Removing color.mp4 4.15MB
6. Solution Removing color.srt 1.46KB
6. Solution Resize a picture.mp4 6.10MB
6. Solution Resize a picture.srt 1.78KB
6. Training an ANN.mp4 5.20MB
6. Training an ANN.srt 4.05KB
7. Solution Build a neural network.mp4 10.76MB
7. Solution Build a neural network.srt 5.48KB
7. Solution Convolution filters.mp4 6.22MB
7. Solution Convolution filters.srt 1.71KB
7. Solution Manipulate some pictures.mp4 9.54MB
7. Solution Manipulate some pictures.srt 3.72KB
7. Validation and testing.mp4 3.22MB
7. Validation and testing.srt 2.60KB
8. An ANN model.mp4 3.51MB
8. An ANN model.srt 3.00KB
9. Reusing existing network architectures.mp4 4.22MB
9. Reusing existing network architectures.srt 3.94KB
description.html 1.04KB
description.html 1.06KB
description.html 1.10KB
description.html 1.13KB
description.html 1.20KB
description.html 1.22KB
description.html 1.25KB
Ex_Files_Computer_Vision_Deep_Dive_in_Python.zip 145.77MB
Ex_Files_Deep_Learning_Getting_Started.zip 102.95KB
Ex_Files_Hands_On_PyTorch_ML.zip 6.84MB
Ex_Files_ML_Foundations_Linear_Algebra.zip 33.35KB