Please note that this page does not hosts or makes available any of the listed filenames. You
cannot download any of those files from here.
|
[CourseClub.NET].url |
123B |
[FCS Forum].url |
133B |
[FreeCourseSite.com].url |
127B |
1. (Legacy) Restricted Boltzmann Machine Theory.mp4 |
14.39MB |
1. (Legacy) Restricted Boltzmann Machine Theory.vtt |
10.39KB |
1. (Review) Theano Basics.mp4 |
93.43MB |
1. (Review) Theano Basics.vtt |
6.31KB |
1. Application of PCA and SVD to NLP (Natural Language Processing).mp4 |
3.93MB |
1. Application of PCA and SVD to NLP (Natural Language Processing).vtt |
351B |
1. Autoencoders.mp4 |
5.82MB |
1. Autoencoders.vtt |
3.94KB |
1. Basic Outline for RBMs.mp4 |
32.98MB |
1. Basic Outline for RBMs.vtt |
5.64KB |
1. Exercises on feature visualization and interpretation.mp4 |
3.75MB |
1. Exercises on feature visualization and interpretation.vtt |
351B |
1. Introduction and Outline.mp4 |
3.27MB |
1. Introduction and Outline.vtt |
351B |
1. Recommender Systems Section Introduction.mp4 |
68.17MB |
1. Recommender Systems Section Introduction.vtt |
351B |
1. The Vanishing Gradient Problem Description.mp4 |
5.20MB |
1. The Vanishing Gradient Problem Description.vtt |
351B |
1. t-SNE Theory.mp4 |
7.90MB |
1. t-SNE Theory.vtt |
4.78KB |
1. What does PCA do.mp4 |
27.79MB |
1. What does PCA do.vtt |
4.96KB |
1. What is the Appendix.mp4 |
5.45MB |
1. What is the Appendix.vtt |
3.28KB |
10. Deep Autoencoder Visualization Description.mp4 |
2.46MB |
10. Deep Autoencoder Visualization Description.vtt |
2.00KB |
10. Python 2 vs Python 3.mp4 |
7.84MB |
10. Python 2 vs Python 3.vtt |
5.35KB |
10. RBM in Code (Theano) with Greedy Layer-Wise Training on MNIST.mp4 |
47.76MB |
10. RBM in Code (Theano) with Greedy Layer-Wise Training on MNIST.vtt |
6.77KB |
10. Recommender RBM Code Speedup.mp4 |
82.95MB |
10. Recommender RBM Code Speedup.vtt |
82.96MB |
10. SVD (Singular Value Decomposition).mp4 |
42.47MB |
10. SVD (Singular Value Decomposition).vtt |
10.33KB |
11. Deep Autoencoder Visualization in Code.mp4 |
27.85MB |
11. Deep Autoencoder Visualization in Code.vtt |
6.67KB |
11. Is Theano Dead.mp4 |
17.82MB |
11. Is Theano Dead.vtt |
11.30KB |
11. RBM in Code (Tensorflow).mp4 |
13.70MB |
11. RBM in Code (Tensorflow).vtt |
351B |
12. An Autoencoder in 1 Line of Code.mp4 |
24.94MB |
12. An Autoencoder in 1 Line of Code.vtt |
5.08KB |
12. What order should I take your courses in (part 1).mp4 |
29.33MB |
12. What order should I take your courses in (part 1).vtt |
14.09KB |
13. What order should I take your courses in (part 2).mp4 |
37.62MB |
13. What order should I take your courses in (part 2).vtt |
20.24KB |
2. (Legacy) Deriving Conditional Probabilities from Joint Probability.mp4 |
9.37MB |
2. (Legacy) Deriving Conditional Probabilities from Joint Probability.vtt |
5.72KB |
2. (Review) Theano Neural Network in Code.mp4 |
87.03MB |
2. (Review) Theano Neural Network in Code.vtt |
3.29KB |
2. BONUS Where to get Udemy coupons and FREE deep learning material.mp4 |
4.03MB |
2. BONUS Where to get Udemy coupons and FREE deep learning material.vtt |
2.99KB |
2. Denoising Autoencoders.mp4 |
3.44MB |
2. Denoising Autoencoders.vtt |
2.26KB |
2. How does PCA work.mp4 |
50.93MB |
2. How does PCA work.vtt |
12.37KB |
2. Introduction to RBMs.mp4 |
39.44MB |
2. Introduction to RBMs.vtt |
351B |
2. Latent Semantic Analysis in Code.mp4 |
25.62MB |
2. Latent Semantic Analysis in Code.vtt |
351B |
2. The Vanishing Gradient Problem Demo in Code.mp4 |
31.29MB |
2. The Vanishing Gradient Problem Demo in Code.vtt |
351B |
2. t-SNE Visualization.mp4 |
13.03MB |
2. t-SNE Visualization.vtt |
4.82KB |
2. Where does this course fit into your deep learning studies.mp4 |
5.19MB |
2. Where does this course fit into your deep learning studies.vtt |
351B |
2. Why Autoencoders and RBMs work.mp4 |
38.19MB |
2. Why Autoencoders and RBMs work.vtt |
351B |
3. (Legacy) Contrastive Divergence for RBM Training.mp4 |
4.85MB |
3. (Legacy) Contrastive Divergence for RBM Training.vtt |
3.01KB |
3. (Review) Tensorflow Basics.mp4 |
81.47MB |
3. (Review) Tensorflow Basics.vtt |
5.06KB |
3. Application of t-SNE + K-Means Finding Clusters of Related Words.mp4 |
25.99MB |
3. Application of t-SNE + K-Means Finding Clusters of Related Words.vtt |
351B |
3. Data Preparation and Logistics.mp4 |
21.21MB |
3. Data Preparation and Logistics.vtt |
351B |
3. How to Succeed in this Course.mp4 |
6.41MB |
3. How to Succeed in this Course.vtt |
351B |
3. Motivation Behind RBMs.mp4 |
34.00MB |
3. Motivation Behind RBMs.vtt |
351B |
3. Stacked Autoencoders.mp4 |
6.60MB |
3. Stacked Autoencoders.vtt |
4.24KB |
3. t-SNE on the Donut.mp4 |
15.10MB |
3. t-SNE on the Donut.vtt |
2.23KB |
3. Why does PCA work (PCA derivation).mp4 |
51.32MB |
3. Why does PCA work (PCA derivation).vtt |
351B |
3. Windows-Focused Environment Setup 2018.mp4 |
186.39MB |
3. Windows-Focused Environment Setup 2018.vtt |
17.39KB |
4. (Legacy) How to derive the free energy formula.mp4 |
10.88MB |
4. (Legacy) How to derive the free energy formula.vtt |
5.60KB |
4. (Review) Tensorflow Neural Network in Code.mp4 |
97.39MB |
4. (Review) Tensorflow Neural Network in Code.vtt |
4.78KB |
4. AutoRec.mp4 |
48.90MB |
4. AutoRec.vtt |
351B |
4. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4 |
43.92MB |
4. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.vtt |
12.40KB |
4. Intractability.mp4 |
12.92MB |
4. Intractability.vtt |
351B |
4. PCA only rotates.mp4 |
16.45MB |
4. PCA only rotates.vtt |
351B |
4. t-SNE on XOR.mp4 |
9.31MB |
4. t-SNE on XOR.vtt |
3.64KB |
4. Where to get the code and data.mp4 |
26.43MB |
4. Where to get the code and data.vtt |
351B |
4. Writing the autoencoder class in code (Theano).mp4 |
38.52MB |
4. Writing the autoencoder class in code (Theano).vtt |
6.08KB |
5. (Review) Keras Basics.mp4 |
27.64MB |
5. (Review) Keras Basics.vtt |
8.05KB |
5. AutoRec in Code.mp4 |
102.28MB |
5. AutoRec in Code.vtt |
12.62KB |
5. How to Code by Yourself (part 1).mp4 |
24.53MB |
5. How to Code by Yourself (part 1).vtt |
19.78KB |
5. MNIST visualization, finding the optimal number of principal components.mp4 |
9.39MB |
5. MNIST visualization, finding the optimal number of principal components.vtt |
3.33KB |
5. Neural Network Equations.mp4 |
31.71MB |
5. Neural Network Equations.vtt |
7.42KB |
5. Tensorflow or Theano - Your Choice!.mp4 |
18.93MB |
5. Tensorflow or Theano - Your Choice!.vtt |
351B |
5. Testing our Autoencoder (Theano).mp4 |
11.36MB |
5. Testing our Autoencoder (Theano).vtt |
2.67KB |
5. t-SNE on MNIST.mp4 |
4.35MB |
5. t-SNE on MNIST.vtt |
1.59KB |
6. (Review) Keras in Code pt 1.mp4 |
66.17MB |
6. (Review) Keras in Code pt 1.vtt |
6.47KB |
6. Categorical RBM for Recommender System Ratings.mp4 |
47.59MB |
6. Categorical RBM for Recommender System Ratings.vtt |
12.05KB |
6. How to Code by Yourself (part 2).mp4 |
14.80MB |
6. How to Code by Yourself (part 2).vtt |
11.62KB |
6. PCA implementation.mp4 |
32.09MB |
6. PCA implementation.vtt |
351B |
6. Training an RBM (part 1).mp4 |
49.08MB |
6. Training an RBM (part 1).vtt |
11.76KB |
6. What are the practical applications of unsupervised deep learning.mp4 |
11.66MB |
6. What are the practical applications of unsupervised deep learning.vtt |
351B |
6. Writing the deep neural network class in code (Theano).mp4 |
41.97MB |
6. Writing the deep neural network class in code (Theano).vtt |
6.37KB |
7. (Review) Keras in Code pt 2.mp4 |
38.67MB |
7. (Review) Keras in Code pt 2.vtt |
4.70KB |
7. Autoencoder in Code (Tensorflow).mp4 |
24.45MB |
7. Autoencoder in Code (Tensorflow).vtt |
8.17KB |
7. How to Succeed in this Course (Long Version).mp4 |
18.31MB |
7. How to Succeed in this Course (Long Version).vtt |
12.79KB |
7. PCA for NLP.mp4 |
16.62MB |
7. PCA for NLP.vtt |
3.89KB |
7. Recommender RBM Code pt 1.mp4 |
70.42MB |
7. Recommender RBM Code pt 1.vtt |
8.74KB |
7. Training an RBM (part 2).mp4 |
27.34MB |
7. Training an RBM (part 2).vtt |
6.44KB |
8. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4 |
38.95MB |
8. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.vtt |
27.77KB |
8. PCA objective function.mp4 |
3.68MB |
8. PCA objective function.vtt |
2.28KB |
8. Recommender RBM Code pt 2.mp4 |
39.58MB |
8. Recommender RBM Code pt 2.vtt |
4.63KB |
8. Testing greedy layer-wise autoencoder training vs. pure backpropagation.mp4 |
18.53MB |
8. Testing greedy layer-wise autoencoder training vs. pure backpropagation.vtt |
1.86KB |
8. Training an RBM (part 3) - Free Energy.mp4 |
27.58MB |
8. Training an RBM (part 3) - Free Energy.vtt |
7.03KB |
9. Cross Entropy vs. KL Divergence.mp4 |
7.42MB |
9. Cross Entropy vs. KL Divergence.vtt |
5.48KB |
9. PCA Application Naive Bayes.mp4 |
53.65MB |
9. PCA Application Naive Bayes.vtt |
10.78KB |
9. Proof that using Jupyter Notebook is the same as not using it.mp4 |
78.25MB |
9. Proof that using Jupyter Notebook is the same as not using it.vtt |
78.26MB |
9. RBM Greedy Layer-Wise Pretraining.mp4 |
23.62MB |
9. RBM Greedy Layer-Wise Pretraining.vtt |
5.19KB |
9. Recommender RBM Code pt 3.mp4 |
128.54MB |
9. Recommender RBM Code pt 3.vtt |
11.98KB |